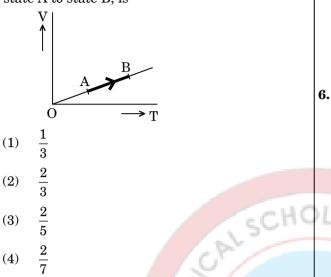
All India Medical Scholarship Entrance Test


NEET - 2018 All Set Question Paper with Answer Key (Code AA, BB, CC, DD)

All India Medical Scholarship Entrance Test AIMSET is a National Level Scholarship Test <u>www.aimset.in</u>

10

वंधा एव

 The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

- The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is
 - (1) 12.5 cm
 - (2) 8 cm
 - (3) 13.2 cm
 - (4) 16 cm
- **3.** At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere ? (Given :

Mass of oxygen molecule (m) = 2.76×10^{-26} kg

Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$

- $(1) ~~5{\cdot}016 \times 10^4 ~{\rm K}$
- $(2) \quad 8{\cdot}360 \times 10^4 \ \mathrm{K}$
- $(3) \quad 2{\cdot}508\times 10^4 \ \mathrm{K}$
- $(4) \quad 1{\cdot}254\times 10^4 \ \mathrm{K}$
- 4. The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is
 - (1) 6.25%
 - (2) 20%
 - (3) 26.8%
 - (4) 12.5%

- A carbon resistor of $(47 \pm 4.7) \text{ k}\Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be
 - $(1) \quad Yellow-\ Green-Violet-Gold$
 - $(2) \quad Yellow-\ Violet-Orange-Silver$
 - (3) Violet Yellow Orange Silver
 - (4) Green Orange Violet Gold
- 6. A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is
 - (1) 20
 - (2) 11
 - (3) 10
 - (4) 9

A battery consists of a variable number 'n' of identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?

$$(1) \qquad 1 \qquad 0 \qquad \rightarrow n$$

$$(2) \qquad 1 \qquad 0 \qquad \rightarrow n$$

$$(3) \qquad 1 \qquad 0 \qquad \rightarrow n$$

$$(3) \qquad 1 \qquad 0 \qquad \rightarrow n$$

$$(4) \qquad 1 \qquad 0 \qquad \rightarrow n$$

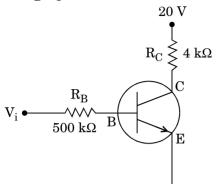
8. Unpolarised light is incident from air on a plane surface of a material of refractive index 'μ'. At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation ?

(1)
$$i = \sin^{-1}\left(\frac{1}{\mu}\right)$$

- (2) Reflected light is polarised with its electric vector perpendicular to the plane of incidence
- (3) Reflected light is polarised with its electric vector parallel to the plane of incidence
- (4) $i = \tan^{-1}\left(\frac{1}{\mu}\right)$
- 9. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to
 - (1) $2 \cdot 1 \text{ mm}$
 - $(2) \quad 1{\cdot}9 \ mm$
 - (3) 1·8 mm
 - (4) 1·7 mm
- **10.** An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
 - (1) large focal length and large diameter
 - (2) large focal length and small diameter
 - (3) small focal length and large diameter
 - (4) small focal length and small diameter

- The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
- (1) 2:-1
- (2) 1:-1
- (3) 1:1
- (4) 1:-2

(1)


2 +

12. An electron of mass m with an initial velocity $\overrightarrow{V} = V_0 \hat{i} \ (V_0 > 0)$ enters an electric field $\overrightarrow{E} = -E_0 \hat{i} \ (E_0 = \text{constant} > 0)$ at t = 0. If λ_0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is

(1)
$$\lambda_0 t$$

(2) $\lambda_0 \left(1 + \frac{eE_0}{mV_0}t\right)$
(3) $\frac{\lambda_0}{\left(1 + \frac{eE_0}{mV_0}t\right)}$
(4) λ_0

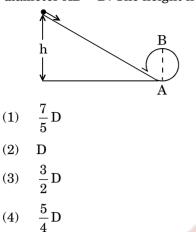
- For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is
 - (1) 30
 - (2) 10
 - (3) 20
 - (4) 15
- 14. When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_1 . When the frequency of the incident radiation is increased to $5v_0$, the maximum velocity of electrons emitted from the same plate is v_2 . The ratio of v_1 to v_2 is
 - (1) 4:1
 - (2) 1:4
 - (3) 1:2
 - (4) 2:1

15. In the circuit shown in the figure, the input voltage V_i is 20 V, $V_{BE} = 0$ and $V_{CE} = 0$. The values of I_B , I_C and β are given by

- (1) $I_B = 20 \ \mu A$, $I_C = 5 \ mA$, $\beta = 250$
- (2) $I_B = 25 \mu A$, $I_C = 5 mA$, $\beta = 200$
- (3) $I_B = 40 \ \mu A$, $I_C = 10 \ mA$, $\beta = 250$
- (4) $I_B = 40 \ \mu A$, $I_C = 5 \ mA$, $\beta = 125$
- 16. In a p-n junction diode, change in temperature due to heating
 - (1) does not affect resistance of p-n junction
 - (2) affects only forward resistance
 - (3) affects only reverse resistance
 - (4) affects the overall V I characteristics of p-n junction 20.
- 17. In the combination of the following gates the output Y can be written in terms of inputs A and B as

- (1) $\overline{\mathbf{A} \cdot \mathbf{B}} + \mathbf{A} \cdot \mathbf{B}$
- (2) A. \overline{B} + \overline{A} . B
- (3) $\overline{\mathbf{A} \cdot \mathbf{B}}$
- (4) $\overline{\mathbf{A} + \mathbf{B}}$

- An em wave is propagating in a medium with a velocity $\overrightarrow{V} = V \hat{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along
- (1) -y direction
- (2) + z direction
- (3) z direction
- (4) -x direction
- 19. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
 - (1) **30°**
 - (2) 45°
 - (3) 60°
 - (4) zero


An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be

- (1) 30 cm towards the mirror
- (2) 36 cm away from the mirror
- (3) 30 cm away from the mirror
- (4) 36 cm towards the mirror
- 21. The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance
 - (1) **1·389** H
 - (2) 138.88 H
 - (3) **0**·138 H
 - (4) 13·89 H

- 22. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is
 - (1) 10 times greater
 - (2) 5 times greater
 - (3) smaller
 - (4) equal
- 23. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
 - (1) proportional to the square root of the distance between the plates.
 - (2) linearly proportional to the distance between the plates.
 - (3) independent of the distance between the plates.
 - (4) inversely proportional to the distance between the plates.
- 24. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - (1) 350 m/s
 - (2) 339 m/s
 - (3) 330 m/s
 - $(4) \quad \ \ 300 \ m/s$
- 25. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s² at a distance of 5 m from the mean position. The time period of oscillation is
 - (1) 2 s
 - (2) πs
 - (3) $2\pi s$
 - (4) 1 s

- A metallic rod of mass per unit length 0.5 kg m^{-1} is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
- $(1) \quad 14{\cdot}76 \; A$
- (2) 5.98 A
- (3) 7·14 A
- (4) 11.32 A
- 27. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
 - (1) the lattice structure of the material of the rod
 - (2) the magnetic field
 - (3) the current source
 - (4) the induced electric field due to the changing magnetic field
- 28. An inductor 20 mH, a capacitor 100 μ F and a resistor 50 Ω are connected in series across a source of emf, V = 10 sin 314 t. The power loss in the circuit is
 - (1) 2·74 W
 - (2) 0.43 W
 - $(3) \quad 0.79 \text{ W}$
 - (4) 1.13 W
 - **9.** Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is
 - (1) 250Ω
 - (2) 25 Ω
 - $(3) \quad 40 \; \Omega$
 - (4) 500 Ω

30. A body initially at rest and sliding along a 34. frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to

- 31. Three objects, A : (a solid sphere), B : (a thin circular disk) and C : (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation relation (1) $W_B > W_A > W_C$ (2) $W_A > W_B > W_C$

 - (3) $W_{C} > W_{B} > W_{A}$
 - $(4) \quad W_{A} > W_{C} > W_{B}$
- 32. A moving block having mass m, collides with another stationary block having mass 4m. The 36. lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be
 - (1)0.8
 - (2)0.25
 - (3)0.5
 - (4)0.4
- 33. Which one of the following statements is 37. incorrect?
 - (1)Frictional force opposes the relative motion.
 - Limiting value of static friction is directly (2)proportional to normal reaction.
 - (3)Rolling friction is smaller than sliding friction.
 - (4)Coefficient of sliding friction has dimensions of length.

- A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field \mathbf{E} . Due to the force $q \mathbf{E}$, its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively
- (1)1 m/s, 3.5 m/s
- 1 m/s. 3 m/s (2)
- (3)2 m/s, 4 m/s
- (4)1.5 m/s, 3 m/s
- 35. A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is

A
C
B
(1)
$$a = g \cos \theta$$

(2) $a = \frac{g}{\sin \theta}$
(3) $a = \frac{g}{\cos e \theta}$

(4) $a = g \tan \theta$

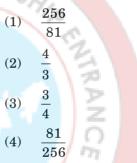
The moment of the force, $\vec{F} = 4\hat{i} + 5\hat{j} - 6\hat{k}$ at (2, 0, -3), about the point (2, -2, -2), is given by

$$(1) - 7\hat{i} - 8\hat{j} - 4\hat{k}$$


$$(2) - 4\hat{i} - \hat{j} - 8\hat{k}$$

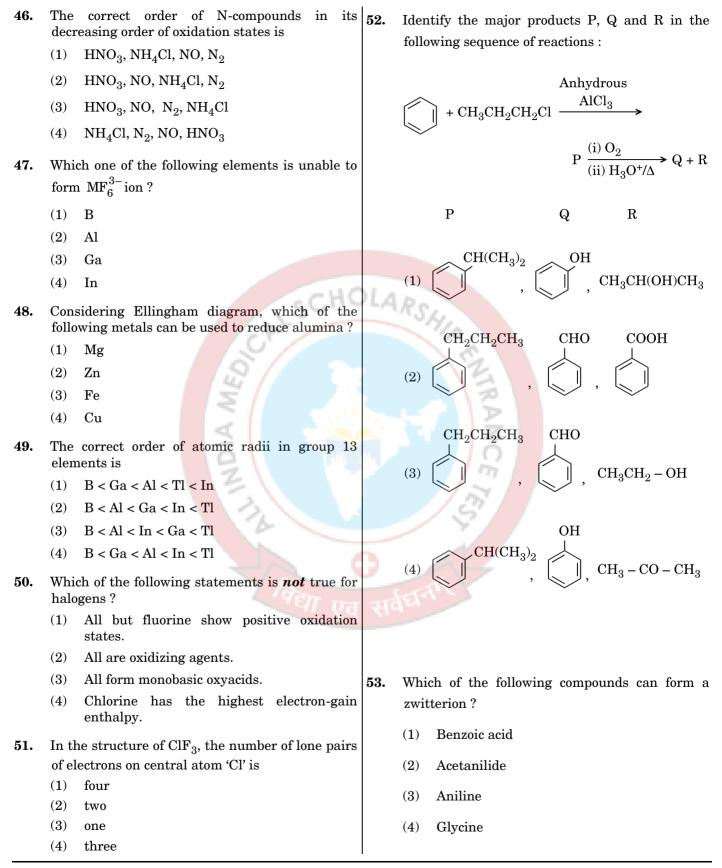
$$(3) - 8\hat{i} - 4\hat{j} - 7\hat{k}$$

$$(4) - 7\hat{i} - 4\hat{j} - 8\hat{k}$$


- A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is
 - (1)0.023 cm
 - 0.525 cm (2)
 - (3)0.521 cm
 - (4)0.529 cm

- 38. A solid sphere is rotating freely about its 42. symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
 - (1)Rotational kinetic energy
 - (2)Moment of inertia
 - (3)Angular velocity
 - (4)Angular momentum
- 39. The kinetic energies of a planet in an elliptical 43. orbit about the Sun, at positions A, B and C are K_A , K_B and K_C , respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. CALSCH Then

- (1) $K_{\rm B} < K_{\rm A} < K_{\rm C}$
- (2) $K_A > K_B > K_C$
- (3) $K_A < K_B < K_C$
- (4) $K_{\rm R} > K_{\Lambda} > K_{\rm C}$
- 40. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is *not* correct?
 - Time period of a simple pendulum on the (1)Earth would decrease.
 - (2)Walking on the ground would become more difficult.
 - (3)Raindrops will fall faster.
 - (4)'g' on the Earth will not change.
- A solid sphere is in rolling motion. In rolling 45. 41. motion a body possesses translational kinetic energy (K_t) as well as rotational kinetic energy (K_r) simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is
 - (1)10:7
 - (2)5:7
 - (3)7:10
 - (4)2:5


- A small sphere of radius 'r' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
- r^5 (1)
- r^2 (2)
- r^3 (3)
- r^4 (4)
- The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4}\lambda_0$, the power radiated by it becomes nP. The value of n is

- Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount?
 - 4 F (1)(2)6 F

44.

- (3)9 F
- F (4)
- A sample of 0.1 g of water at 100°C and normal pressure $(1.013 \times 10^5 \text{ Nm}^{-2})$ requires 54 cal of heat energy to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is
 - (1) $42 \cdot 2 J$
 - (2)208.7 J
 - (3)104.3 J
 - 84·5 J (4)

- **54.** Regarding cross-linked or network polymers, which of the following statements is *incorrect*?
 - (1) Examples are bakelite and melamine.
 - (2) They are formed from bi- and tri-functional monomers.
 - (3) They contain covalent bonds between various linear polymer chains.
 - (4) They contain strong covalent bonds in their polymer chains.
- **55.** Nitration of aniline in strong acidic medium also gives m-nitroaniline because
 - (1) In absence of substituents nitro group always goes to m-position.
 - (2) In electrophilic substitution reactions amino group is meta directive.
 - (3) In spite of substituents nitro group always goes to only m-position.
 - (4) In acidic (strong) medium aniline is present as anilinium ion.
- 56. The difference between amylose and amylopectin is
 - (1) Amylopectin have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage
 - (2) Amylose have $1 \rightarrow 4$ α -linkage and $1 \rightarrow 6 \beta$ -linkage
 - (3) Amylopectin have $1 \rightarrow 4$ α -linkage and $1 \rightarrow 6 \alpha$ -linkage
 - (4) Amylose is made up of glucose and galactose
- 57. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
 - (1) 2.8
 - (2) 3.0
 - (3) 1.4
 - (4) 4.4
- **58.** Which of the following oxides is most acidic in nature ?
 - (1) BaO
 - (2) BeO
 - (3) MgO
 - (4) CaO

- Which oxide of nitrogen is **not** a common pollutant introduced into the atmosphere both due to natural and human activity ?
- $(1) N_2O$
- (2) NO₂
- $(3) N_2O_5$
- (4) NO
- 60. The compound A on treatment with Na gives B, and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order
 - (1) $C_2H_5Cl, C_2H_6, C_2H_5OH$
 - (2) C_2H_5OH , C_2H_5Cl , C_2H_5ONa
 - (3) C_2H_5OH , C_2H_6 , C_2H_5Cl
 - (4) C_2H_5OH , C_2H_5ONa , C_2H_5Cl
- 61. The compound C₇H₈ undergoes the following reactions:

$$C_7H_8 \xrightarrow{3 Cl_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$$

The product 'C' is

- (1) 3-bromo-2,4,6-trichlorotoluene
- (2) *o*-bromotoluene
- (3) *m*-bromotoluene
- (4) *p*-bromotoluene
- **62.** Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
 - $(1) \quad \mathrm{CH}_3 \mathrm{CH}_3$
 - (2) $CH_2 = CH_2$
 - $(3) \quad CH \equiv CH$
 - (4) CH₄

+ CHCl₃ + NaOH — \bigcirc $CH_2 = CH - CH = CH_2$ $CH_2 = CH - C \equiv CH$ the electrophile involved is $HC \equiv C - C \equiv CH$ dichloromethyl anion $(CHCl_2)$ (1) $CH_3 - CH = CH - CH_3$ formyl cation (CHO) (2)Which of the following carbocations is expected to (3)dichloromethyl cation $(CHCl_2)$ be most stable? (4)dichlorocarbene (:CCl₂) SCALSCH NO_2 67. Carboxylic acids have higher boiling points than and even aldehydes, ketones comparable molecular mass. It is due to their more extensive association of carboxylic (1)acid via van der Waals force of attraction NO₂ (2)formation of carboxylate ion (3) formation of intramolecular H-bonding (4)formation of intermolecular H-bonding н **68**. Compound A, $C_8H_{10}O$, is found to react with NO_{2} NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell. A and Y are respectively Η $\mathop{\rm CH}_{|}$ – $\mathop{\rm CH}_3$ and $\mathop{\rm I_2}_2$ (1) NO_2 OH – CH_2 – CH_2 – OH and I_2 (2)Which of the following is correct with respect to - I effect of the substituents ? (R = alkyl) \leftarrow CH₂ – OH and I₂ (3) $(1) - NH_2 > - OR > - F$ $(2) - NR_2 < -OR < -F$ $(3) - NH_2 < -OR < -F$ OH and I_2 (4) $(4) - NR_2 > - OR > - F$

In the reaction

OH

Which of the following molecules represents the **66**.

order of hybridisation sp^2 , sp^2 , sp, sp from left to

63.

64.

right atoms?

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

65.

ACHLA/AA/Page 10

SPACE FOR ROUGH WORK www.aimset.in

English

O⁻Na⁺

alcohols

of

 \cap

CHO

69.	spin	magn	etic m	oments	n in Column I with the of the ions given in c orrect code :		diffe	owing solutions were prepared by mixing erent volumes of NaOH and HCl of different centrations :
		Colun	nn I		Column II		a.	$60 \text{ mL} \frac{\text{M}}{10} \text{ HCl} + 40 \text{ mL} \frac{\text{M}}{10} \text{ NaOH}$
	a.	Co ³⁺		i.	$\sqrt{8}$ B.M.			
	b.	Cr ³⁺		ii.	$\sqrt{35}$ B.M.		b.	55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
	c.	Fe ³⁺		iii.	$\sqrt{3}$ B.M.		c.	75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
	d.	Ni ²⁺		iv. v.	$\sqrt{24}$ B.M. $\sqrt{15}$ B.M.		d.	100 mL $\frac{M}{10}$ HCl + 100 mL $\frac{M}{10}$ NaOH
		a	b	С	d		pH o	of which one of them will be equal to 1?
	(1)	iv	i	ii	iii		(1)	d
	(2)	i	ii	iii	iv		(2)	a
	(2)			ii	i - CHC	11.	(3)	b
		iv 	v		ii SCh	J.L.A	(4)	с
-	(4)	iii	v	i	1 2	75.		which of the following properties does the
70.					lowing ions exhibits gnetism as well ?			ulating power of an ion depend?
	(1)	MnO		F			(1)	Both magnitude and sign of the charge on the ion
	(2)	Cr ₂ O	-		≥ /		(2)	Size of the ion alone
			•		YIQN N	2	(3)	The magnitude of the charge on the ion alone
	(3)	CrO_4^2			9 10		(4)	The sign of charge on the ion alone
	(4)	MnO	$\frac{2}{4}$		Z	76.	Give	m van der Waals constant for NH_3 , H_2 , O_2
71.	Iron	carbon	yl, Fe(C			70.		CO_2 are respectively 4.17, 0.244, 1.36 and
	(1)	trinuc	elear	Ĵ	14			, which one of the following gases is most
	(2)	mono	nuclear			5	easil	ly liquefied ?
	(3)	tetrar	nuclear				(1)	0 ₂
	(4)	dinuc	lear		2 / den 11-	-	(2)	H ₂
72.	The	type of	of isom	erism s	hown by the complex		(3)	NH ₃
	[CoO	$Cl_2(en)_2$	$_2$] is				(4)	CO_2
	(1)			merism		77.	The	solubility of $BaSO_4$ in water is
	(2)			isomeri				$\times 10^{-3}$ gL ⁻¹ at 298 K. The value of its
	(3) (4)		etrical i ige isom	someris	m			bility product (K _{sp}) will be
			-				(Give	en molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$)
73.			etry an [i(CO) ₄]		etic behaviour of the		(1)	$1{\cdot}08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$
	(1)		_		try and paramagnetic		(2)	$1{\cdot}08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$
	(2)	-	-	-	and diamagnetic		(3)	$1.08 imes 10^{-10} ext{ mol}^2 ext{ L}^{-2}$
	(3)	squar	e plana	r geome	try and diamagnetic		(4)	$1.08 imes 10^{-8} ext{ mol}^2 ext{ L}^{-2}$
	(4)	tetrał	nedral g	eometry	and paramagnetic		(1)	

- **78.** In which case is the number of molecules of water maximum ?
 - (1) 0.00224 L of water vapours at 1 atm and 273 K
 - $(2) \quad 0.18 \ g \ of \ water$
 - (3) 18 mL of water
 - $(4) \quad 10^{-3} \text{ mol of water}$
- **79.** The correct difference between first- and second-order reactions is that
 - (1) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
 - (2) the half-life of a first-order reaction does not depend on $[A]_0$; the half-life of a second-order reaction does depend on $[A]_0$
 - (3) the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
 - (4) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
- 80. Among CaH₂, BeH₂, BaH₂, the order of ionic character is
 - (1) $\operatorname{BeH}_2 < \operatorname{BaH}_2 < \operatorname{CaH}_2$
 - (2) $CaH_2 < BeH_2 < BaH_2$
 - (3) $BeH_2 < CaH_2 < BaH_2$
 - (4) $BaH_2 < BeH_2 < CaH_2$
- 81. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :

$$BrO_{4}^{-} \xrightarrow{1.82 \text{ V}} BrO_{3}^{-} \xrightarrow{1.5 \text{ V}} HBrO$$
$$Br^{-} \xleftarrow{1.0652 \text{ V}} Br_{2} \xleftarrow{1.595 \text{ V}}$$

Then the species undergoing disproportionation is

- (1) Br₂
- (2) BrO₄⁻
- $(3) \quad BrO_3^-$
- (4) HBrO

For the redox reaction

 $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$ the correct coefficients of the reactants for the balanced equation are

	${ m MnO}_4^-$	$C_2 O_4^{2-}$	H^{+}
(1)	2	16	5
(2)	2	5	16
(3)	16	5	2
(4)	5	16	2

83. Which one of the following conditions will favour maximum formation of the product in the reaction,

$$A_2(g) + B_2(g) \rightleftharpoons X_2(g) \quad \Delta_r H = -X \text{ kJ }?$$

- (1) High temperature and high pressure
- (2) Low temperature and low pressure
- (3) Low temperature and high pressure
- (4) High temperature and low pressure
- 84. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
 - (1) is tripled
 - (2) is doubled
 - (3) is halved
 - (4) remains unchanged

85. The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1 : 0.5 : 1. ΔH for the formation of XY is -200 kJ mol^{-1} . The bond dissociation energy of X_2 will be

- (1) 800 kJ mol⁻¹
- (2) 100 kJ mol^{-1}
- (3) 200 kJ mol^{-1}
- (4) 400 kJ mol^{-1}
- **86.** The correction factor 'a' to the ideal gas equation corresponds to
 - (1) electric field present between the gas molecules
 - (2) volume of the gas molecules
 - (3) density of the gas molecules
 - (4) forces of attraction between the gas molecules

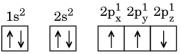
87. Consider the following species :

CN⁺, CN⁻, NO and CN

Which one of these will have the highest bond order?

- (1) CN⁺
- (2) CN⁻
- (3) NO
- (4) CN
- 88. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1s^2 2s^2 2p^3$, the simplest formula for this compound is

CALSCHO


- (1) Mg₂X
- (2) MgX₂
- (3) Mg₂X₃
- (4) Mg₃X₂
- **89.** Iron exhibits bcc structure at room temperature. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature) is
 - $(1) \quad \frac{3\sqrt{3}}{4\sqrt{2}}$

$$(2) \quad \frac{4\sqrt{3}}{3\sqrt{2}}$$

$$(3) \quad \frac{\sqrt{3}}{\sqrt{2}}$$

 $(4) \quad \frac{1}{2}$

- **90.** Which one is a *wrong* statement ?
 - $(1) \quad \ \ {\rm The \ electronic \ configuration \ of \ N \ atom \ is}$

- (2) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.97.
- (3) Total orbital angular momentum of electron in 's' orbital is equal to zero.
- (4) The value of m for d_{z^2} is zero.

- 91. Oxygen is *not* produced during photosynthesis by
 - (1) Cycas
 - (2) Nostoc
 - (3) Green sulphur bacteria
 - (4) Chara
- **92.** Double fertilization is
 - $(1) \quad Fusion \ of \ two \ male \ gametes \ with \ one \ egg$
 - (2) Fusion of one male gamete with two polar nuclei
 - (3) Fusion of two male gametes of a pollen tube with two different eggs
 - (4) Syngamy and triple fusion
- **93.** Which one of the following plants shows a very close relationship with a species of moth, where none of the two can complete its life cycle without the other ?
 - (1) Banana
 - (2) Yucca
 - (3) Hydrilla
 - (4) Viola
- 94. Pollen grains can be stored for several years in liquid nitrogen having a temperature of
 - (1) 196°C
 - (2) $-80^{\circ}C$
 - (3) -120° C
 - (4) -160° C
- **95.** Which of the following elements is responsible for maintaining turgor in cells ?
 - (1) Potassium
 - (2) Sodium
 - (3) Magnesium
 - (4) Calcium
- **96.** What is the role of NAD⁺ in cellular respiration ?
 - (1) It is a nucleotide source for ATP synthesis.
 - (2) It functions as an electron carrier.
 - (3) It functions as an enzyme.
 - (4) It is the final electron acceptor for anaerobic respiration.
 - 7. In which of the following forms is iron absorbed by plants ?
 - (1) Free element
 - (2) Ferrous
 - (3) Ferric
 - (4) Both ferric and ferrous

98.	vector for introducing a DNA fragment in human		Which of the following pairs is <i>wrongly</i> matched?
	lymphocytes ? (1) λ phage		(1) XO type sex : Grasshopper determination
	(1) <i>T</i>i plage(2) Ti plasmid		(2) ABO blood grouping : Co-dominance
	(3) Retrovirus		(3) Starch synthesis in pea : Multiple alleles
	(4) pBR 322		(4) T.H. Morgan : Linkage
99.	Use of bioresources by multinational companies	105.	Select the <i>correct</i> statement :
	and organisations without authorisation from the		(1) Spliceosomes take part in translation.
	concerned country and its people is called		(2) Punnett square was developed by a British
	(1) Biodegradation		scientist.
	(2) Biopiracy		 (3) Franklin Stahl coined the term "linkage". (4) The solution may discussed by S. Alternational Statement of the Statement
	(3) Bio-infringement	100	(4) Transduction was discovered by S. Altman.
	(4) Bioexploitation	106.	The experimental proof for semiconservative replication of DNA was first shown in a
100.	In India, the organisation responsible for	ILA	(1) Plant
	assessing the safety of introducing genetically modified organisms for public use is		(2) Bacterium
	(1) Research Committee on Genetic		(3) Fungus
	Manipulation (RCGM)		(4) Virus
	(2) Council for Scientific and Industrial	107.	Which of the following flowers only once in its life-time?
	Research (CSIR)	17-2-	(1) Mango
	(3) Indian Council of Medical Research (ICMR)	e2	(2) Jackfruit
	(4) Genetic Engineering Appraisal Committee	a. 🖂	(3) Bamboo species
	(GEAC)		(4) Papaya
101.	The correct order of steps in Polymerase Chain	108.	Offsets are produced by
	Reaction (PCR) is		 Parthenocarpy Mitotic divisions
	(1) Denaturation, Extension, Annealing	_	(3) Meiotic divisions
	 (2) Annealing, Extension, Denaturation (3) Extension, Denaturation, Annealing 	D	(4) Parthenogenesis
	(4) Denaturation, Annealing, Extension	109.	Select the <i>correct</i> match :
		स	(1) Matthew Meselson – Pisum sativum
102.	Select the <i>correct</i> match :		and F. Stahl
	(1) T.H. Morgan – Transduction		(2) Alfred Hershey and $-$ TMV
	(2) $F_2 \times \text{Recessive parent} - \text{Dihybrid cross}$		Martha Chase
	(3) Ribozyme – Nucleic acid		(3) Alec Jeffreys – Streptococcus pneumoniae
	(4) G. Mendel – Transformation		(4) Francois Jacob and – <i>Lac</i> operon
103.	A 'new' variety of rice was patented by a foreign		Jacques Monod
	company, though such varieties have been	110.	Which of the following has proved helpful in
	present in India for a long time. This is related to(1) Lerma Rojo		preserving pollen as fossils ?
	(1) Lerma Kojo(2) Sharbati Sonora		(1) Oil content (2) Collusionistics
	(2) Sharbar Sonora (3) Co-667		(2) Cellulosic intine(3) Pollenkitt
	(4) Basmati		(3) Pollenkitt(4) Sporopollenin
			(4) Shorohomenun

111.	Nata	ality refers to	117.	The	two functional groups characteristic of
	(1)	Number of individuals leaving the habitat			ars are
	(1) (2)	Birth rate		(1)	carbonyl and phosphate
	(3)	Death rate		(2)	carbonyl and methyl
	(4)	Number of individuals entering a habitat		(3)	hydroxyl and methyl
	(=)			(4)	carbonyl and hydroxyl
112.	Wor	ld Ozone Day is celebrated on	118.	Whie	ch among the following is <i>not</i> a prokaryote ?
	(1)	$16^{ m th}$ September		(1)	Nostoc
	(2)	21 st April		(2) (3)	Mycobacterium Saccharomyces
	(3)	5^{th} June		(4)	Oscillatoria
			119.		Golgi complex participates in
	(4)	22 nd April		(1)	Respiration in bacteria
113.	Whi	ch of the following is a secondary pollutant ?		(2)	Formation of secretory vesicles
	(1)	SO ₂	1.1	(3)	Fatty acid breakdown
	(2)	CO ₂ SCRC	r L A	(4)	Activation of amino acid
	(3)	SO ₂ CO ₂ CO ₀	120.		ch of the following is <i>not</i> a product of light
		0			tion of pho <mark>tosyn</mark> thesis ?
	(4)	O ₃		(1)	NADPH
114.	Nich	ie is		(2)	NADH
	(1)	the range of temperature that the organism	77-	(3) (4)	ATP Oxygen
	(9)	needs to live	121.		ch of the following is true for nucleolus ?
	(2) (3)	the physical space where an organism lives all the biological factors in the organism's	121.	(1)	It takes part in spindle formation.
	(3)	environment	1	(1) (2)	It is a membrane-bound structure.
	(4)	the functional role played by the organism		(3)	Larger nucleoli are present in dividing cells.
		where it lives		(4)	It is a site for active ribosomal RNA
115.	Wha	t type of ecological pyramid would be			synthesis.
	obta	ined with the following data ?	122.	Ston	natal movement is <i>not</i> affected by
		Secondary consumer : 120 g	_	(1)	O ₂ concentration
		Primary consumer : 60 g	सर्व	(2)	Light
		Primary producer : 10 g		(3)	Temperature
	(1)	Upright pyramid of numbers		(4)	$\rm CO_2$ concentration
	(2)	Pyramid of energy	123.		stage during which separation of the paired ologous chromosomes begins is
	(3)	Inverted pyramid of biomass		(1)	Diakinesis
	(4)	Upright pyramid of biomass		(1) (2)	Diplotene
116.	In s	tratosphere, which of the following elements		(2)	Pachytene
	acts	as a catalyst in degradation of ozone and		(4)	Zygotene
		ase of molecular oxygen ?	124.	Ston	nata in grass leaf are
	(1)	Fe		(1)	Rectangular
	(2)	Cl		(2)	Kidney shaped
	(3)	Carbon		(3)	Dumb-bell shaped
	(4)	Oxygen		(4)	Barrel shaped

125.	Seco prod	ndary xylem and phloem in dicot stem are luced by	132.		r karyogamy luced exogend						
	(1)	Phellogen		(1)	Agaricus	Jusiy	111				
	(2)	Vascular cambium		(1) (2)	Alternaria						
	(3)	Apical meristems		(2)							
	(4)	Axillary meristems		(4)	Saccharomy	vces					
196		imatophores occur in			U						
120.	(1)	Carnivorous plants	133.			-	n in Column I with those in				
	(1) (2)	Free-floating hydrophytes				select	t the <i>correct</i> option given				
	(2) (3)	Halophytes			below :						
					Column I		Column II				
	(4)	Submerged hydrophytes		a.	Herbarium	i.	It is a place having a				
127.	-	parian strips occur in					collection of preserved				
	(1)	Cortex					plants and animals.				
	(2)	Pericycle Epidermis Endodermis	1.1	b.	Key	ii.	A list that enumerates				
	(3)	Epidermis	LA	RS			methodically all the				
	(4)	Endodermis		~	7/2 V		species found in an area				
128.	Plan	ts having little or n <mark>o sec</mark> ondary growth are			151		with brief description aiding identification.				
	(1)	Conifers O		_			0				
	(2)	Deciduous angiosperms		c.	Museum	iii.	Is a place where dried and pressed plant specimens				
	(3)	Grasses					mounted on sheets are				
	(4)	Cycads	2		2 z		kept.				
129.	Swee	et potato is a mo <mark>difie</mark> d 👝	M /	d.	Catalogue	iv.	A booklet containing a list				
	(1)	Tap root	1		m		of characters and their				
	(2)	Adventitious root			151		alternates which are				
	(3)	Stem			/ S/		helpful in identification of				
	(4)	Rhizome					various taxa.				
130.	Whie	ch of the following statements is <i>correct</i> ?		(1)	a b	с 	d				
	(1)	Horsetails are gymnosperms.		(1)	ii iv	iii					
	(2)	Selaginella is heterosporous, while Salvinia	-316	(2)	iii ii	i 	1V 				
		is homosporous.	×1.	(3)	i iv	iii					
	(3)	Ovules are not enclosed by ovary wall in		(4)	iii iv	i	ii				
		gymnosperms.	134.	Wing	ged pollen gra	ains a	are present in				
	(4)	Stems are usually unbranched in both		(1)	Mango		-				
		Cycas and Cedrus.		(2)	Cycas						
131.	Sele	ct the <i>wrong</i> statement :		(3)	Mustard						
	(1)	Pseudopodia are locomotory and feeding structures in Sporozoans.		(4)	Pinus						
	(2)	Mushrooms belong to Basidiomycetes.	135.		ch one is <i>wro</i>						
	(3)	Cell wall is present in members of Fungi		(1)	Gemma cup		– Marchantia				
		and Plantae.		(2)	Biflagellate						
	(4)	Mitochondria are the powerhouse of the cell		(3)	Uniflagellat	-					
		in all kingdoms except Monera.		(4)	Unicellular	orgai	nism – <i>Chlorella</i>				

136.	repr	Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively ?							The transparent lens in the human eye is held in its place by			
	emp (1)	Increa	-	respira	itory	surface; es		(1) (2)	smooth muscles at ligaments attached			
	(2)		ased nu atory si		f bron	chioles; Increased		(3)	ligaments attached			
	(3)	Inflan	-	n of l	bronch	ioles; Decreased		(4)			led to the ciliary body	
	(4)	Decre Inflan	ased nmatior	respira 1 of bro		surface; es	140.		ch of the following none?	is a	n amino acid derived	
137.	Colu	ımn II	-			nn I with those in rect option given		(1) (2)	Estradiol Ecdysone			
	belo											
		Colun				olumn II		(3)	Epinephrine			
	a.	Tricus	spid val	ve i.		tween left atrium d left ventricle	PLA	(4)	Estriol			
	b.	Bicus	pid valv	re ii	ver	tween right ntricle and	141.		ch of th <mark>e fo</mark> llowing ificant role in osteop		ormones can play a sis ?	
		a			1 427	Imonary artery		(1)	Estrogen and Para	thy	roid hormone	
	c.	Semil	unar va	lve 11		tween right ium and right	2	(2)	Progesterone and A	Aldo	sterone	
						ntricle	12	(3)	Aldosterone and Pr	rola	ctin	
	(1)	а і	b ii	с iii	ā			(4)	Parathyroid hormo	one a	and Prolactin	
	(2)	i	iii	ii	Z		142	Whi	ch of the following	str	uctures or regions is	
	(3)	iii	i	ii	10		172.		prrectly paired with		-	
	(4)	ii	i	iii		2		(1)	Hypothalamus		production of	
100					C 1	T 10 11 1		(1)	Hypothalamus	:	releasing hormones	
138.			-			nn I with those in rect option given					and regulation of	
	belo										temperature, hunger and thirst.	
		Colun	nn I			Column II	540				-	
	a.	Tidal	volume		i.	2500 - 3000 mL		(2)	Limbic system	:	consists of fibre tracts that	
	b.	Inspir volum	ratory R ne	leserve	ii.	1100 – 1200 mL					interconnect different regions of	
	c.	Expir volum	atory R ne	eserve	iii.	$500-550 \mathrm{~mL}$					brain; controls movement.	
	d.	Resid	ual volu	ıme	iv.	1000 - 1100 mL		(3)	Medulla oblongata	:	controls respiration	
		a	b	С	d						and cardiovascular reflexes.	
	(1)	i	iv	ii	iii			(4)	Corpus callosum	:	band of fibers	
	(2)	iii	i	iv	ii			. /	• · · · · · · · · · · · · · · · · · · ·		connecting left and	
	(3)	iii	ii	i	iv						right cerebral hemispheres.	
	(4)	iv	iii	ii	i						nemispheres.	

143.	The	amnion of mammalian embryo is derived	147.	Ciliates differ from all other protozoans in
_	from			(1) using pseudopodia for capturing prey
	(1)	mesoderm and trophoblast		(2) having a contractile vacuole for removing
	(2)	endoderm and mesoderm		excess water
	(3)	ectoderm and mesoderm		(3) using flagella for locomotion(4) having two types of nuclei
	(4)	ectoderm and endoderm		(4) having two types of nuclei
144.		nones secreted by the placenta to maintain mancy are	148.	Identify the vertebrate group of animals characterized by crop and gizzard in its digestive system.
	(1)	hCG, hPL, progestogens, estrogens		(1) Aves
	(2)			(2) Reptilia (2) Amphibia
		hCG, hPL, estrogens, relaxin, oxytocin		(3) Amphibia(4) Osteichthyes
	(3)	hCG, hPL, progestogens, prolactin		
	(4)	hCG, progestogens, estrogens, glucocorticoids	149.	Which of the following features is used to identify a male cockroach from a female cockroach ?
145.	The	difference between spermiogenesis and		(1) Forewings with darker tegmina
140.		miation is		(2) Presence of caudal styles
	(1)	In spermiogenesis spermatozoa from sertoli		(3) Presence of a boat shaped sternum on the
	(1)	cells are released into the cavity of	10-	9 th abdominal segment (4) Presence of anal cerci
		seminiferous tubules, while in spermiation	1	(4) Presence of anal cerci
		spermatozoa are formed.	150.	
	(2)	In spermiogenes <mark>is s</mark> permatozoa are formed,		homeotherm ?
		while in spermiation spermatids are		(1) Camelus
		formed.		(2) Chelone
	(3)	In spermiogenesis spermatids are formed,		(3) Macropus
		while in spermiation spermatozoa are formed.		(4) Psittacula
	(4)	In spermiogenesis spermatozoa are formed,	151.	Which of the following animals does <i>not</i> undergo
	(4)	while in spermiation spermatozoa are	101.	metamorphosis ?
		released from sertoli cells into the cavity of		(1) Moth
		seminiferous tubules.		(2) Tunicate
				(3) Earthworm
146.	The	contraceptive 'SAHELI'		(4) Starfish
	(1)	is an IUD.	152.	Which of the following organisms are known as
	(2)	increases the concentration of estrogen and		chief producers in the oceans ?
	(- ·	prevents ovulation in females.		(1) Cyanobacteria
	(3)	blocks estrogen receptors in the uterus,		(2) Diatoms(2) Directorellater
		preventing eggs from getting implanted.		(3) Dinoflagellates(4) Euglepeids
	(4)	is a post-coital contraceptive.		(4) Euglenoids

153. 154.	inte the (1) (2) (3) (4) All	ch one of the following population ractions is widely used in medical science for production of antibiotics ? Parasitism Mutualism Commensalism Amensalism of the following are included in 'Ex-situ servation' <i>except</i> Botanical gardens Sacred groves Wildlife safari parks Seed banks		 (1) (2) (3) (4) A way X 	an er struc an op a pro oman chrom erited l Only Only Only	hancer tural ge perator moter has an 1 osomes. oy grandc sons daught	enes X-linke . This hildren	d con ch	f an operon <i>except</i> ndition on one of her romosome can be
155.	Mat	ch the items given in Column I with those in umn II and select the <i>correct</i> option given	160.	Acco	ording lution	to Huş is	-	/ries	, the mechanism of
156.	 a. b. c. d. (1) (2) (3) (4) In a 	Column IColumn IIEutrophicationi.UV-B radiationSanitary landfillii.DeforestationSnow blindnessiii.NutrientSnow blindnessiv.Waste disposal abcd iiiiviiiiiiiviiiiiiiviiiiiiiviiiiiiiviiiia bcd iiiiviiiiiiiiviiiiiiviiiiiiviiiiiiviiia growing population of a country,iii	161. 162.	 (2) (3) (4) AGO stra sequence (1) (2) (3) (4) 	Salta Mult Mino GTATC nd of a lence o ACC UGG AGG UCC	iple step or mutation GCAT a gene. of the tr UAUGO TUTCO UAUCO AUAGO	p mutat tions is a se What v canscrib CGAU CGAU CGUA	tions eque vill h bed n	nce from the coding be the corresponding nRNA ?
		reproductive and pre-reproductive individuals are equal in number.	स	Colu belo		and s	elect tl	he <i>c</i>	orrect option given
	(2) (3)	reproductive individuals are less than the post-reproductive individuals. pre-reproductive individuals are more than the reproductive individuals.		a.	endometrial				Breakdown of
	(4)	pre-reproductive individuals are less than the reproductive individuals.		b.		etory Pł		ii. 	Follicular Phase
157.		ch part of poppy plant is used to obtain the g "Smack" ?		C.	a	struatio b :::	C	111.	Luteal Phase
	(1)	Roots		(1)	ii	iii 	i 		
	(2)	Latex		(2)	i 	iii 	ii		
	(3)	Flowers		(3)	iii	ii	i		
	(4)	Leaves		(4)	iii	i	ii		

163.		mn II			n Column I with those in the <i>correct</i> option given	165.	5. Which of the following gastric cells indirectly help in erythropoiesis ?(1) Goblet cells			
		Colun	ın I		Column II		(2) Mucous cells			
	a.	Glycos	suria	i.	Accumulation of uric acid in joints		(3) Chief cells(4) Parietal cells			
	b.	Gout		ii.	Mass of crystallised salts within the kidney	166.	(4) Parietal cells6. Match the items given in Column I with those in			
	c.	Renal calculi iii.		iii.	Inflammation in glomeruli		Column II and select the <i>correct</i> option given below :			
	d.	Glome nephr		iv.	Presence of glucose in urine		Column I Column II a. Fibrinogen i. Osmotic balance			
		a	b	c	d					
	(1)	ii	iii	i		ILA	b. Globulin ii. Blood clotting			
	(2)	i	ii	iii	iv		c. Albumin iii. Defence mechanism			
	(3)	iii	ii	iv	i		a b c			
	(4)	iv	i	ii	iii,		(1) i iii ii			
164.	Mate	h the i	items gi	ven i	n Column I with those in	-	$(2) \mathbf{i} \qquad \mathbf{ii} \qquad \mathbf{iii} \\ (2) \mathbf{ii} \qquad \mathbf{ii} \qquad \mathbf{iii} \\ (3) \mathbf{iii} \qquad \mathbf{iii} \qquad \mathbf{iii} \\ (4) \mathbf{iii} \qquad \mathbf{iii} \qquad \mathbf{iii} \\ (5) \mathbf{iii} \qquad \mathbf{iii} \qquad \mathbf{iii} \qquad \mathbf{iii} i$			
			-		he <i>correct</i> option given	2	(3) iii ii i (4) ii iii i			
	belo	w:			ē In		(4) 11 111 1			
		Colun	ın I		Column II	167.	7. Which of the following is an occupational			
		(Func	tion)		(Part of Excretory		respiratory disorder ?			
		T T14	(°1) /·		System)		(1) Botulism			
	a.		filtration		i. Henle's loop		(2) Silicosis			
	b.	Conce of uri	entration ne	1	ii. Ureter		(3) Anthracis			
	c.		port of		iii. Urinary bladder	सर्वे	(4) Emphysema 8. Calcium is important in skeletal muscle			
	1				• • • • • • • • • • • • • • • • • • • •	108.	8. Calcium is important in skeletal muscle contraction because it			
	d.	Storag	ge of uri	ne	iv. Malpighian corpuscle		(1) detaches the myosin head from the actin			
					v. Proximal		filament.			
		0	h	6	convoluted tubule		(2) activates the myosin ATPase by binding to it.			
	(1)	a 	b :	c :	d .:		(3) binds to troponin to remove the masking of			
	(1)	v 	iv :	i .::	ii 		active sites on actin for myosin.			
	(2)	iv 	i	ii .::	iii 		(4) prevents the formation of bonds between			
	(3)	iv	v	ii	iii 		the myosin cross bridges and the actin			
	(4)	v	iv	i	iii		filament.			

169.	Niss	l bodies are mair	nly composed of	175.	. In which disease does mosquito transmitte	-
	(1)	Nucleic acids ar	nd SER		pathogen cause chronic inflammation of lymphatic vessels ?	of
	(2)	DNA and RNA			(1) Ringworm disease	
	(3)	Proteins and lip	oids		(1) And worm discuse (2) Ascariasis	
	(4)	Free ribosomes	and RER		(3) Elephantiasis	
170.	Whie	ch of these stater	nents is <i>incorrect</i> ?		(4) Amoebiasis	
	(1)		ates as long as it is supplied can pick up hydrogen atoms.	176.	. Which of the following is <i>not</i> an autoimmun disease ?	ıe
	(2)	Glycolysis occur	rs in cytosol.		(1) Alzheimer's disease	
	(3)	Enzymes of T mitochondrial n	YCA cycle are present in natrix.		(2) Rheumatoid arthritis(3) Psoriasis	
	(4)	-	phorylation takes place in drial membrane.		(4) Vitiligo	
171.	Seleo	ct the <i>incorrect</i>	match :	177.	Among the following sets of examples for divergent evolution, select the <i>incorrect</i> option	
	(1)		 L-shaped chromososmes 	J L A	(1) Brain of bat, man and cheetah	•
		chromosomes	A. A.		(2) Heart of bat, man and cheetah	
	(2)	Allosomes	 Sex chromosomes 		(3) Forelimbs of man, bat and cheetah	
	(3)	Lampbrush chromosomes	- Diplotene bivalents		(4) Eye of octopus, bat and man	
	(4)	Polytene chromosomes	- Oocytes of amphibians	178.	nutritional value by increasing the amount of	ts
179	White	ab of the follow	ving terms describe human		(1) Vitamin B_{12}	
112.		ition?	ing terms describe numan	w/	(2) Vitamin A	
	(1)	Pleurodont, Mo	n <mark>ophy</mark> odont, Homodont		(3) Vitamin D	
	(2)	Thecodont, Dipl	hy <mark>odon</mark> t, Heterodont		(4) Vitamin E	
	(3)	Thecodont, Dipl	hyod <mark>ont, H</mark> omodont	179.		os
	(4)	Pleurodont, Dip	hyodont, Heterodont	5	of many vertebrates is an example of (1) Convergent evolution	
173	Whie	ch of the followi	ng events does <i>not</i> occur in	Υ.	 Convergent evolution Analogy 	
110.		h endoplasmic re		-	(3) Homology	
	(1)	Cleavage of sign	nal peptide	1.0	(4) Adaptive radiation	
	(2)	Protein glycosyl	lation	180.	• Which of the following characteristics represent	nt
	(3)	Protein folding			'Inheritance of blood groups' in humans ?	
	(4)	Phospholipid sy	nthesis		a. Dominance	
174	Mon		ay associate with a single		b. Co-dominance	
174.			tiple copies of a polypeptide		c. Multiple allele	
	simu	ltaneously. Suc	h strings of ribosomes are		d. Incomplete dominance	
		ned as			e. Polygenic inheritance	
	(1)	Plastidome			(1) b, d and e	
	(2)	Polyhedral bodi	es		(2) a, b and c	
	(3)	Polysome			(3) b, c and e	
	(4)	Nucleosome			(4) a, c and e	

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

Read carefully the following instructions :

- 1. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 3. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. **Cases where a** candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 4. Use of Electronic/Manual Calculator is prohibited.
- 5. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 7. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

5	ANS	QNO	ANS	QNO	ANS	QNO	ANS
1	3	46	2	91	3	136	3
2	2	47	3	92	2	137	1
3	3	48	1	93	1	138	2
4	3	49	4	94	2	139	3
5	3	50	4	95	4	140	1
6	2	51	4	96	4	141	3
7	3	52	4	97	2	142	1
8	1	53	3	98	3	143	2
9	4	54	3	99	2	144	4
10	4	55	1	100	3	145	3
11	3	56	2	101	1	146	4
12	2	57	4	102	4	147	1
13	2	58	2	103	1	148	3
14	4	59	3	104	2	149	1
 15	2	60	4	105	4	150	2
		 61			3		4
		62		107		152	
 18		63		108			pinn,
 19		 64		109		154	
							£
		65		110		155	2
		66		111	2	156	1
22		67		112		157	3
23		68		113		158	3
24		69		114 		159	4
25	3		2	115		160 	3
26	2	71	3	116	2	161	3
27	2	72	1	117	3	162	2
				118	3	163	2
29		74				164	
30	2	75	3	120			2
				121	3		3
32	4	77	4		4	167	4
			4	123	2	168	4
34	4	79		124		169	4
				125	2		3
		81	2	126		171	2
37	4	82		127		172	4
				130			 2
							 1
				132			
44	2	89	4	134	4		2

ACHLA

This Booklet contains 24 pages.

Test Booklet Code

Do not open this Test Booklet until you are asked to do so.

Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions :

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **Side-1** and **Side-2** carefully with **blue/black** ball point pen only.
- 2. The test is of **3 hours** duration and this Test Booklet contains **180** questions. Each question carries **4** marks. For each correct response, the candidate will get **4** marks. For each incorrect response, **one mark** will be deducted from the total scores. The maximum marks are 720.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **BB**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is *not* permissible on the Answer Sheet.

_ Invigilator's Signature :

1.	The type of isomerism shown by the complex $[CoCl_2(en)_2]$ is					6.		correct order of N-compounds in its easing order of oxidation states is
	(1)	(1) Geometrical isomerism				(1)	HNO ₃ , NO, N ₂ , NH ₄ Cl	
	(2)	Linka	age ison	erism			(2)	NH ₄ Cl, N ₂ , NO, HNO ₃
	(3)	Ioniz	ation iso	omerism	1		(3)	HNO_3 , NH_4Cl , NO , N_2
	(4)	Coor	dination	isomer	ism			о́. Г. –
2.					llowing ions exhibits		(4)	HNO_3 , NO, NH_4Cl , N_2
	d-d transition and paramagnetism as well ?					7.	Whic	ch one of the following elements is unable to
	(1)	CrO	2— 4				form	$\operatorname{MF}_{6}^{3-}$ ion ?
	(2)	MnO	b_4^{2-}				(1)	Ga
	(3)	MnO	b_{4}^{-}				(2)	In
	(4)	Cr_2C	n^{2-}				(3)	В
	(4)	0120	7		-110	1.	(4)	Al
3.					en in Column I with the	8.	Cons	sidering Ellingham diagram, which of the
	_	-			of the ions given in <i>correct</i> code :		follo	wing metals can be used to reduce alumina ?
	Con	Colui		ign the	Column II		(1)	Fe
	a.	Co ³⁺		i.	$\sqrt{8}$ B.M.		(2)	Cu
							(3)	Mg
	b.	Cr ³⁺		ii.	$\sqrt{35}$ B.M.	25	(4)	Zn
	c.	Fe^{3+}		iii.	$\sqrt{3}$ B.M.	9.	The	correct order of atomic radii in group 13
	d.	Ni ²⁺		iv.	$\sqrt{24}$ B.M.	1	elem	ients is
				v.	$\sqrt{15}$ B.M.		(1)	B < Al < In < Ga < Tl
		a	b	с	d		(2)	B < Ga < Al < In < Tl
	(1)	iv	v	ii	i		(3)	B < Ga < Al < Tl < In
	(2)	iii	v	i	ii	D.	(4)	B < Al < Ga < In < Tl
	(3)	iv	i	ii	iii	10.	Whic	ch of the following statements is <i>not</i> true for
		i	ii	iii	iv रहा एव	18		gens?
4.	Iron carbonyl, $Fe(CO)_5$ is						(1)	All form monobasic oxyacids.
7.	(1)		nuclear	50)515			(2)	Chlorine has the highest electron-gain enthalpy.
	(1) (2)	dinu					(3)	All but fluorine show positive oxidation
	(3)	trinu					(-)	states.
	(4)	mono	onuclear				(4)	All are oxidizing agents.
5.	The	geom	etrv an	d magi	netic behaviour of the	11.	In th	e structure of ClF ₃ , the number of lone pairs
		-	Ni(CO) ₄]	-			of el	ectrons on central atom 'Cl' is
	(1)	squa	re plana	r geome	etry and diamagnetic		(1)	one
	(2)	tetra	hedral g	eometr	y and paramagnetic		(2)	three
	(3)	-	-	-	etry and paramagnetic		(3)	four
	(4)	tetra	hedral g	eometr	y and diamagnetic		(4)	two

12. In the reaction

$$\begin{array}{c} OH \\ \downarrow \\ \bigcirc \\ + CHCl_3 + NaOH \end{array} \longrightarrow \begin{array}{c} O^-Na^+ \\ \bigcirc \\ \bigcirc \\ \hline \\ O \end{array} CHO$$

the electrophile involved is

- (1) dichloromethyl cation ($\overset{\smile}{CHCl}_2$)
- (2) dichlorocarbene ($:CCl_2$)
- (3) dichloromethyl anion $(CHCl_2)$
- (4) formyl cation ($\overset{\odot}{CHO}$)
- 13. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
 - (1) formation of intramolecular H-bonding
 - (2) formation of intermolecular H-bonding
 - (3) more extensive association of carboxylic acid via van der Waals force of attraction
 - (4) formation of carboxylate ion
- 14. Compound A, $C_8H_{10}O$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell.

A and Y are respectively

(1)
$$H_3C \longrightarrow CH_2 - OH \text{ and } I_2$$

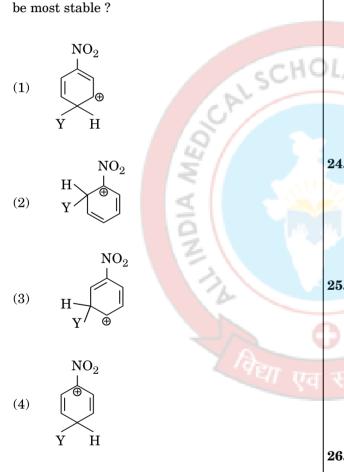
(2)
$$CH_3 \longrightarrow OH \text{ and } I_2$$

(3)
$$(3)$$
 $CH - CH_3 \text{ and } I_2$
 OH

- **15.** Which oxide of nitrogen is *not* a common pollutant introduced into the atmosphere both due to natural and human activity ?
 - $(1) N_2O_5$
 - (2) NO
 - (3) N₂O
 - (4) NO₂
- 16. The compound A on treatment with Na gives B, and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order
 - (1) $C_2H_5OH, C_2H_6, C_2H_5Cl$

(2)
$$C_2H_5OH, C_2H_5ONa, C_2H_5Cl$$

- (3) $C_2H_5Cl, C_2H_6, C_2H_5OH$
- (4) C_2H_5OH , C_2H_5Cl , C_2H_5ONa
- 17. The compound C₇H₈ undergoes the following reactions :


$$C_7H_8 \xrightarrow{3 Cl_2 / \Delta} A \xrightarrow{Br_2 / Fe} B \xrightarrow{Zn / HCl} C$$

The product 'C' is

- (1) *m*-bromotoluene
- (2) *p*-bromotoluene
- (3) **3-bromo-2,4,6-trichlorotoluene**
- (4) o-bromotoluene
- 18. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
 - (1) $CH \equiv CH$
 - (2) CH₄
 - (3) $CH_3 CH_3$
 - (4) $CH_2 = CH_2$

19. Which of the following molecules represents the order of hybridisation sp², sp², sp, sp from left to right atoms ?

- (1) $HC \equiv C C \equiv CH$
- (2) $CH_3 CH = CH CH_3$
- (3) $CH_2 = CH CH = CH_2$
- (4) $CH_2 = CH C \equiv CH$
- **20.** Which of the following carbocations is expected to be most stable ?

- Which of the following is correct with respect toI effect of the substituents ? (R = alkyl)
 - (1) $-NH_2 < -OR < -F$
 - $(2) \quad -\operatorname{NR}_2 > -\operatorname{OR} > -\operatorname{F}$
 - $(3) \quad -\operatorname{NH}_2 > -\operatorname{OR} > -\operatorname{F}$
 - $(4) \quad -\mathrm{NR}_2 < -\mathrm{OR} < -\mathrm{F}$

- A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
 - (1) 1.4
 - (2) 4.4
 - (3) 2.8
 - (4) **3**·0

23. The difference between amylose and amylopectin is

- (1) Amylopectin have $1 \rightarrow 4$ α -linkage and $1 \rightarrow 6 \alpha$ -linkage
- (2) Amylose is made up of glucose and galactose
- (3) Amylopectin have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage
- (4) Amylose have $1 \rightarrow 4 \quad \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage
- 24. Which of the following compounds can form a zwitterion ?
 - (1) Aniline
 - (2) Glycine
 - (3) Benzoic acid
 - (4) Acetanilide
- **25.** Regarding cross-linked or network polymers, which of the following statements is *incorrect* ?
 - (1) They contain covalent bonds between various linear polymer chains.
 - (2) They contain strong covalent bonds in their polymer chains.
 - (3) Examples are bakelite and melamine.
 - (4) They are formed from bi- and tri-functional monomers.
- **26.** Nitration of aniline in strong acidic medium also gives m-nitroaniline because
 - (1) In spite of substituents nitro group always goes to only m-position.
 - (2) In acidic (strong) medium aniline is present as anilinium ion.
 - (3) In absence of substituents nitro group always goes to m-position.
 - (4) In electrophilic substitution reactions amino group is meta directive.

27. Identify the major products P, Q and R in the following sequence of reactions :

Anhydrous	a. 60 mL $\frac{M}{10}$ HCl + 40 mL $\frac{M}{10}$ NaOH
+ CH ₃ CH ₂ CH ₂ Cl $\xrightarrow{\text{AlCl}_3}$	b. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
$P \xrightarrow{(i) O_2} Q + R$	c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
	d. 100 mL $\frac{M}{10}$ HCl + 100 mL $\frac{M}{10}$ NaOH
P Q R	pH of which one of them will be equal to 1 ?
	(1) b
$CH_2CH_2CH_3$ CHO	(2) c
	(3) d
(1) , $CH_3CH_2 - OH$	(4) a
al	30. On which of the following properties does the
OH OT	coagulating power of an ion depend ?
CH(CH ₃) ₂	(1) The magnitude of the charge on the ion
(2) $\left[\begin{array}{c} 1 \end{array} \right] \begin{array}{c} 0 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	alone
	(2) The sign of charge on the ion alone
	(3) Both magnitude and sign of the charge on the ion
a la	(4) Size of the ion alone
CH(CH ₃) ₂ OH	(4) Size of the foll afone
(3) (1)	31. Given van der Waals constant for NH_3 , H_2 , O_2
, , ,	and CO_2 are respectively 4.17, 0.244, 1.36 and
P	3.59, which one of the following gases is most
	easily liquefied ?
CH ₂ CH ₂ CH ₃ CHO COOH	(1) NH ₃
	$(2) \mathrm{CO}_2$
	(3) O_2
	(4) H ₂
	32. The solubility of $BaSO_4$ in water is $2.42 \times 10^{-3} \text{ gL}^{-1}$ at 298 K. The value of its
Which of the following oxides is most acidic in	
nature ?	solubility product (K_{sp}) will be
(1) MgO	(Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$)
(2) CaO	(1) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$
(3) BaO	(2) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$
	(3) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$
(4) BeO	(4) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$

Following solutions were prepared by mixing different volumes of NaOH and HCl of different

concentrations :

28.

33. For the redox reaction

 $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$ the correct coefficients of the reactants for the balanced equation are

	${\rm MnO}_4^-$	$C_2 O_4^{2-}$	H^+
(1)	16	5	2
(2)	5	16	2
(3)	2	16	5
(4)	2	5	16

34. Which one of the following conditions will favour maximum formation of the product in the reaction,

 $A_2(g) + B_2(g) \rightleftharpoons X_2(g) \quad \Delta_r H = -X kJ?$

- (1) Low temperature and high pressure
- (2) High temperature and low pressure
- (3) High temperature and high pressure
- (4) Low temperature and low pressure
- **35.** When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
 - (1) is halved
 - (2) remains unchanged
 - (3) is tripled
 - (4) is doubled
- **36.** The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1: 0.5: 1. ΔH for the formation of XY is -200 kJ mol^{-1} . The bond dissociation energy of X_2 will be
 - (1) 200 kJ mol^{-1}
 - $(2) \quad 400 \text{ kJ mol}^{-1}$
 - (3) 800 kJ mol^{-1}
 - $(4) \quad 100 \ \text{kJ} \ \text{mol}^{-1}$
- **37.** The correction factor 'a' to the ideal gas equation corresponds to
 - (1) density of the gas molecules
 - $\begin{array}{cccc} (2) & \mbox{forces of attraction between the gas} \\ & \mbox{molecules} \end{array} \end{array}$
 - (3) electric field present between the gas molecules
 - (4) volume of the gas molecules

- **38.** In which case is the number of molecules of water maximum ?
 - (1) 18 mL of water
 - $(2) \quad 10^{-3} \text{ mol of water}$
 - (3) 0.00224 L of water vapours at 1 atm and 273 K
 - (4) 0.18 g of water
- **39.** The correct difference between first- and second-order reactions is that
 - (1) the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
 - (2) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
 - (3) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
 - (4) the half-life of a first-order reaction does not depend on $[A]_0$; the half-life of a second-order reaction does depend on $[A]_0$
- **40.** Among CaH₂, BeH₂, BaH₂, the order of ionic character is
 - (1) $\operatorname{BeH}_2 < \operatorname{CaH}_2 < \operatorname{BaH}_2$
 - (2) $\operatorname{BaH}_2 < \operatorname{BeH}_2 < \operatorname{CaH}_2$
 - (3) $BeH_2 < BaH_2 < CaH_2$
 - (4) $CaH_2 < BeH_2 < BaH_2$
- 41. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :

$$BrO_{4}^{-} \xrightarrow{1.82 \text{ V}} BrO_{3}^{-} \xrightarrow{1.5 \text{ V}} HBrO$$
$$Br^{-} \xleftarrow{1.0652 \text{ V}} Br_{2} \xleftarrow{1.595 \text{ V}}$$

Then the species undergoing disproportionation is

(1) BrO_{3}^{-} (2) HBrO(3) Br_{2} (4) BrO_{4}^{-}

Consider the following species :						
CN^+ , CN^- , NO and CN						
Which one of these will have the highest bond						
order ?						

(1)NO

42.

- (2)CN
- CN^+ (3)
- (4) CN^{-}
- 43. Which one is a *wrong* statement?
 - (1)Total orbital angular momentum of electron in 's' orbital is equal to zero.
 - (2)The value of m for d_{z^2} is zero.
 - (3)The electronic configuration of N atom is SCHOLA

$1s^2$	$2s^2$	$2p_x^1$	$2p_x^1 \ 2p_y^1 \ 2p_z^1$				
^↓	^↓	1	1	V			

- An orbital is designated by three quantum (4)numbers while an electron in an atom is designated by four quantum numbers.
- 44. Iron exhibits bcc structure at room temperature. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature) is
 - $\frac{\sqrt{3}}{\sqrt{2}}$ (1)
 - (2)
 - $\frac{3\sqrt{3}}{4\sqrt{2}}$ (3)
 - $\frac{4\sqrt{3}}{3\sqrt{2}}$ (4)

45. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1s^2 2s^2 2p^3$, the simplest formula for this compound is

- (1) Mg_2X_3
- (2) Mg_3X_2
- (3)Mg₂X
- (4)MgX₂

- 46. Which of the following gastric cells indirectly help in erythropoiesis?
 - (1)Chief cells
 - (2)Parietal cells
 - (3)Goblet cells
 - (4)Mucous cells
- 47. Match the items given in Column I with those in Column II and select the *correct* option given below:

	Colur	nn I		Column II
a.	Fibri	nogen	i.	Osmotic balance
b.	Globu	ılin	ii.	Blood clotting
c.	Albu	nin	iii.	Defence mechanism
	a	b	с	
(1)	iii	ii	i	
(2)	ii	iii	i	
(3)	i	iii	ii	
(4)	i	ji	iii	

- Calcium is important in skeletal muscle contraction because it
 - (1) binds to troponin to remove the masking of active sites on actin for myosin.
 - (2)prevents the formation of bonds between the myosin cross bridges and the actin filament.
 - (3)detaches the myosin head from the actin filament.
 - activates the myosin ATPase by binding to (4)it.

49. Which of the following is an occupational respiratory disorder?

- Anthracis (1)
- (2)Emphysema
- Botulism (3)
- (4)Silicosis

48.

50.		ch of the following is an none ?	a amino acid derived	54.	Hormones secreted by the placenta to maintain pregnancy are		
	(1)	Epinephrine			(1)	hCG, hPL, progestogens, prolactin	
	(2)	Estriol			(2)	hCG, progestogens, estrogens, glucocorticoids	
	(3)	Estradiol			(3)	hCG, hPL, progestogens, estrogens	
	(4)	Ecdysone			(4)	hCG, hPL, estrogens, relaxin, oxytocin	
51.		ch of the following stru prrectly paired with its f Medulla oblongata :	-	55.	The (1)	contraceptive 'SAHELI' blocks estrogen receptors in the uterus, preventing eggs from getting implanted.	
			reflexes.		(2)	is a post-coital contraceptive.	
	(2)	Corpus callosum :	band of fibers	LA	(3)	is an IUD.	
			connecting left and	_	(4)	increases the concentration of estrogen and	
			right cerebral hemispheres.			prevents ovulation in females.	
	(3)		production of releasing hormones and regulation of temperature,	56.	The from (1)	amnion of mammalian embryo is derived ectoderm and mesoderm	
		1	hunger and thirst.	N	(2)	ectoderm and endoderm	
	(4)	Limbic system :	consists of fibre tracts that		(3)	mesoderm and trophoblast	
			interconnect		(4)	endoderm and mesoderm	
			different regions of brain; controls	57.	The	difference between spermiogenesis and	
			movement.	57.		miation is	
				2	(1)	In spermiogenesis spermatids are formed,	
52.		e transparent lens in the human eye is held in place by			EL.	while in spermiation spermatozoa are formed.	
	(1)	ligaments attached to the	he ciliary body		(2)	In spermiogenesis spermatozoa are formed,	
	(2)	smooth muscles attache				while in spermiation spermatozoa are	
		(3) smooth muscles attached to the iris				released from sertoli cells into the cavity of	
	(4)	ligaments attached to t	he iris			seminiferous tubules.	
53.		ch of the following ho ificant role in osteoporos			(3)	In spermiogenesis spermatozoa from sertoli cells are released into the cavity of seminiferous tubules, while in spermiation	
	(1)	Aldosterone and Prolac	tin			spermatozoa are formed.	
	(2)	Parathyroid hormone a	nd Prolactin		(4)	In spermiogenesis spermatozoa are formed,	
	(3)	Estrogen and Parathyre	oid hormone			while in spermiation spermatids are	
	(4)	Progesterone and Aldos	terone			formed.	

58. 59.	 All of the following are part of an operon except (1) an operator (2) a promoter (3) an enhancer (4) structural genes A woman has an X-linked condition on one of here X chromosomes. This chromosome can be inherited by (1) Only daughters (2) Both sons and daughters (3) Only grandchildren (4) Only sons 	
60.	According to Hugo de Vries, the mechanism of	
		disease ?
61. 62.	 evolution is (1) Multiple step mutations (2) Minor mutations (3) Phenotypic variations (4) Saltation AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA ? (1) AGGUAUCGCAU (2) UCCAUAGCGUA (3) ACCUAUGCGAU (4) UGGTUTCGCAT Match the items given in Column I with those in Column II and select the <i>correct</i> option given below : 	 (1) Forelimbs of man, bat and cheetah (2) Eye of octopus, bat and man (3) Brain of bat, man and cheetah (4) Heart of bat, man and cheetah 67. The similarity of bone structure in the forelimbs of many vertebrates is an example of (1) Homology
	Column I Column II	(4) Analogy
	a. Proliferative Phase i. Breakdown of endometrial lining	68. Which of the following characteristics represent 'Inheritance of blood groups' in humans ?a. Dominance
	b. Secretory Phase ii. Follicular Phase	b. Co-dominance
	c. Menstruation iii. Luteal Phase	c. Multiple allele
	a b c	d. Incomplete dominancee. Polygenic inheritance
	(1) iii ii i	(1) b, c and e
	(2) iii i ii	(2) a, c and e
	(3) ii iii i	(3) b, d and e
	(4) i iii ii	(4) a, b and c

69.	-	ch of the following options correctly resents the lung conditions in asthma and physema, respectively ?	5 1 1
	(1)	Inflammation of bronchioles; Decreased respiratory surface	
	(2)	Decreased respiratory surface; Inflammation of bronchioles	 (2) Amensalism (3) Parasitism (4) Mutualism
	(3)	Increased respiratory surface; Inflammation of bronchioles	73. All of the following are included in 'Ex-situ
	(4)	Increased number of bronchioles; Increased respiratory surface	0
70.	Colu	ch the items given in Column I with those in umn II and select the <i>correct</i> option given	(3) Botanical gardens
	belo		(4) Sacred groves
		Column I Column II	74. Match the items given in Column I with those in
	a.	Tricuspid valve i. Between left atrium and left ventricle	Column II and select the <i>correct</i> option given below :
	b.	Bicuspid valve ii. Between right	Column I Column II
		ventricle and pulmonary artery	a. Eutrophication i. UV-B radiation
	0	Semilunar valve iii. Between right	b. Sanitary landfill ii. Deforestation
	c.	atrium and right	c. Snow blindness iii. Nutrient
		ventricle	enrichment
		a b c ڬ 💽 🏊	d. Jhum cultivation iv. Waste disposal
	(1)	iii i ii 🤤 🎼	a b c d
	(2)	ii i iii Z	(1) ii i iii iv
	(3)	i ii iii	(2) i ii iv iii
	(4)	i iii ii	(3) iii iv i ii
			(4) i iii iv ii
71.		ch the items given in Column I with those in umn II and select the <i>correct</i> option given	
	belo		
		Column I Column II	(1) pre-reproductive individuals are more than the reproductive individuals.
	a.	Tidal volume i. 2500 – 3000 mL	(2) pre-reproductive individuals are less than
	b.	Inspiratory Reserve ii. 1100 – 1200 mL	the reproductive individuals.
		volume	(3) reproductive and pre-reproductive
	c.	Expiratory Reserve iii. 500 – 550 mL volume	individuals are equal in number.(4) reproductive individuals are less than the
	4	Residual volume iv. 1000 – 1100 mL	post-reproductive individuals.
	d.		76. Which part of poppy plant is used to obtain the
	(1)	a b c d	drug "Smack" ?
	(1)	iii ii i iv 	(1) Flowers
	(2)	iv iii i i	(2) Leaves
	(3)	i iv ii iii	(3) Roots
	(4)	iii i iv ii	(4) Latex

77.	Match the items given in Column I with those in Column II and select the <i>correct</i> option given				Niss (1)	l bodies are mainly composed of Proteins and lipids		
	belo	w:					(2)	Free ribosomes and RER
	Column I				Column II		(3)	Nucleic acids and SER
	a.	Glycosuria i.		i.	Accumulation of uric		(4)	DNA and RNA
	al offoodalla		1.	acid in joints		Whic	ch of these statements is <i>incorrect</i> ?	
	b.	Gout		ii.	Mass of crystallised salts within the kidney		(1)	Enzymes of TCA cycle are present in mitochondrial matrix.
	c.	Renal	calculi	iii.	Inflammation in glomeruli		(2)	Oxidative phosphorylation takes place in outer mitochondrial membrane.
	d.	Glome nephr	erular itis	iv.	v. Presence of glucose in urine		(3)	Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
		-		-			(4)	Glycolysis occurs in cytosol.
	(1)	a iii	b ii	c iv		81.		ch of the following terms describe human ition?
	(2)	iv	i	ii	iii - N		(1)	Thecodont, Diphyodont, Homodont
	(2)	ii	iii	i			(2)	Pleurodont, Diphyodont, Heterodont
					IV S		(3)	Pleurodont, Monophyodont, Homodont
	(4)	i	ii	iii	iv		(4)	Thecodont, Diphyodont, Heterodont
78.	Mate	ch the	items gi	ven i	n Column I with those in	82.	Selec	et the <i>incorrect</i> match :
	Column II and select the <i>correct</i> option given					02.	(1)	Lampbrush – Diplotene bivalents
	below :				9 12	44	(1)	chromosomes
		Column I (Function)			Column II		(2)	Polytene – Oocytes of amphibians
					(Part of Excretory			chromosomes
					System)		(3)	Submetacentric – L-shaped chromososmes
	a.	Ultrat	filtratio	1	i. Henle's loop	5	(4)	Allosomes – Sex chromosomes
	b.		entratior	1	ii. Ureter	83.	Whic	ch of the following events does <i>not</i> occur in
	of urine			1980 117	- 33.6		h endoplasmic reticulum ?	
	c.	c. Transport of urine			iii. Urinary bladder	1.1.1	(1)	Protein folding
	_						(2)	Phospholipid synthesis
	d.	. Storage of u		ne	iv. Malpighian corpuscle		(3)	Cleavage of signal peptide
					-		(4)	Protein glycosylation
					v. Proximal convoluted tubule	84.		y ribosomes may associate with a single
		a	b	с	d			NA to form multiple copies of a polypeptide ultaneously. Such strings of ribosomes are
	(1)	a iv		ii	iii			hed as
			v				(1)	Polysome
	(2)	v	iv	i	iii		(2)	Nucleosome
	(3)	v	iv	i	ii		(3)	Plastidome
	(4)	iv	i	ii	iii		(4)	Polyhedral bodies

85.	Which of the following animals does <i>not</i> undergo	91.	The Golgi complex participates in
	metamorphosis ?		(1) Fatty acid breakdown
	(1) Earthworm		(2) Activation of amino acid
	(2) Starfish		(3) Respiration in bacteria
	(3) Moth		(4) Formation of secretory vesicles
	(4) Tunicate	92.	Stomata in grass leaf are
			(1) Dumb-bell shaped
86.	Which one of these animals is not a homeotherm?		(2) Barrel shaped(3) Rectangular
			(4) Kidney shaped
	(1) Macropus	93.	The stage during which separation of the paired
	(2) Psittacula	J J.	homologous chromosomes begins is
	(3) Camelus		(1) Pachytene
	(4) Chelone		(2) Zygotene
		11.4	(3) Diakinesis
87.	Which of the following features is used to identify	r.A	(4) Diplotene
	a male cockroach from a female cockroach ?	94.	The two functional groups characteristic of
	(1) Presence of a boat shaped sternum on the		sugars are
	9 th abdominal seg <mark>ment</mark>		(1) hydroxyl and methyl
	(2) Presence of anal cerci		(2) carbonyl and hydroxyl
	(3) Forewings with darker tegmina		(3) carbonyl and phosphate
	(4) Presence of caudal styles	05	(4) carbonyl and methyl
00	Identify the worth hasts and an inclu	95.	Which among the following is <i>not</i> a prokaryote ?(1) Saccharomyces
88.	Identify the vertebrate group of animals characterized by crop and gizzard in its digestive		(1) Saccharomyces (2) Oscillatoria
	system.		(3) Nostoc
	(1) Amphibia		(4) Mycobacterium
	(2) Osteichthyes	96.	Stomatal movement is <i>not</i> affected by
	(3) Aves	n,	(1) Temperature
	(4) Reptilia	Ľ.,	(2) CO_2 concentration
	िर्मेशन गर		(3) O_2 concentration
89.	Ciliates differ from all other protozoans in	A.	(4) Light
	(1) using flagella for locomotion	97.	Which of the following is true for nucleolus ?
	(2) having two types of nuclei		(1) Larger nucleoli are present in dividing cells.
	(3) using pseudopodia for capturing prey		(2) It is a site for active ribosomal RNA
	(4) having a contractile vacuole for removing		synthesis.
	excess water		(3) It takes part in spindle formation.
90.	Which of the following organisms are known as		(4) It is a membrane-bound structure.
	chief producers in the oceans ?	98.	Which of the following is not a product of light
	(1) Dinoflagellates		reaction of photosynthesis ?
	(2) Euglenoids		(1) ATP(2) Oxygen
	(3) Cyanobacteria		(2) Oxygen (3) NADPH
	(4) Diatoms		(4) NADH
	(4) Diatonis		(4) NADH

ACHLA/BB/Page 12

99.	Which of the follow	ving elements is responsible for	106.	Sele	ct the <i>correct</i> statemen	nt:
	maintaining turgor			(1)	Franklin Stahl coined	
	(1) Magnesium			(2)	Transduction was disc	overed by S. Altman.
	(2) Calcium			(3)	Spliceosomes take par	t in translation.
	(3) Potassium			(4)	Punnett square was d	
	(4) Sodium				scientist.	1 0
100.		following plants shows a very	107.	Sele	ct the <i>correct</i> match :	
	-	with a species of moth, where		(1)	Alec Jeffreys	– Streptococcus
	none of the two can the other ?	n complete its life cycle without		~ /		pneumoniae
	(1) Hydrilla			(2)	Francois Jacob and	- Lac operon
	(2) Viola				Jacques Monod	
	(3) Banana			(3)	Matthew Meselson	– Pisum sativum
	(4) Yucca				and F. Stahl	
101.	Pollen grains can	be stored for several years in		(4)	Alfred Hershey and	- TMV
	-	ving a temperature of	M .A	-	Martha Chase	
	(1) – 120°C	Series	108.		experimental proof ication of DNA was first	
	(2) – 160°C	C.A.		(1)	Fungus	t shown in a
	(3) – 196°C			(2)	Virus	
	(4) – 80°C	19		(3)	Plant	
102.	Oxygen is <i>not</i> prod	luced during photosynthesis by		(4)	Bacterium	
	(1) Green sulphu	r bacteria	109.	Offse	ets are produced by	
	(2) Chara		É.	(1)	Meiotic divisions	
	(3) Cycas		No. 1/	(2)	Parthenogenesis	
	(4) Nostoc	Z		(3)	Parthenocarpy	
103.	Double fertilization	ı is		(4)	Mitotic divisions	
		male gametes of a pollen tube	110.		ch of the following ched?	pairs is <i>wrongly</i>
	with two diffe			(1)	Starch synthesis in pe	a · Multiple alleles
	(2) Syngamy and			(1)	T.H. Morgan	: Linkage
		male gametes with one egg e male gamete with two polar	U	(2)	XO type sex	: Grasshopper
	nuclei	e male gamete with two polar	-306	(0)	determination	. Grassnopper
104	What is the r	ole of NAD ⁺ in cellular	1.1	(4)	ABO blood grouping	: Co-dominance
104.	respiration ?	ole of NAD in central		Whie	ch of the following h	as proved helpful in
	(1) It functions as	s an enzyme.			erving pollen as fossils	
		electron acceptor for anaerobic		(1)	Pollenkitt	
	respiration.			(2)	Sporopollenin	
		tide source for ATP synthesis.		(3)	Oil content	
	(4) It functions as	s an electron carrier.		(4)	Cellulosic intine	
105.		llowing forms is iron absorbed	112.			wers only once in its
	by plants ?				time ?	
	(1) Ferric	1 6		(1)	Bamboo species	
	(2) Both ferric an(3) Free element			(2) (3)	Papaya Mango	
				(4)	Jackfruit	
	(4) Ferrous			(1)	Suchifult	

ACHLA/BB/Page 14

(2)

(3)

(4)

113. The correct order of steps in Polymerase Chain **119.** Natality refers to Reaction (PCR) is (1)Death rate

- (1)Extension, Denaturation, Annealing
- (2)Denaturation, Annealing, Extension
- (3)Denaturation, Extension, Annealing
- (4)Annealing, Extension, Denaturation
- 114. In India, the organisation responsible for assessing the safety of introducing genetically modified organisms for public use is
 - (1)Indian Council of Medical Research (ICMR)
 - Genetic Engineering Appraisal Committee (2)(GEAC)
 - (3)Research Committee Genetic on Manipulation (RCGM)
 - (4)Council for Scientific and Industrial Research (CSIR)
- 115. Use of bioresources by multinational companies and organisations without authorisation from the concerned country and its people is called
 - (1)**Bio-infringement**
 - (2)Bioexploitation
 - (3)Biodegradation
 - (4)**Biopiracy**
- **116.** Which of the following is commonly used as a vector for introducing a DNA fragment in human lymphocytes ?
 - Retrovirus (1)
 - (2)pBR 322
 - (3) λ phage
 - (4)Ti plasmid
- 117. A 'new' variety of rice was patented by a foreign company, though such varieties have been present in India for a long time. This is related to
 - Co-667 (1)
 - (2)Basmati
 - (3)Lerma Rojo
 - (4)Sharbati Sonora
- 118. Select the *correct* match :

G. Mendel

T.H. Morgan

Transformation

Transduction

Dihybrid cross

_

Nucleic acid (1)Ribozyme

 $F_2 \times Recessive parent$

- (2)Number of individuals entering a habitat
 - (3)Number of individuals leaving the habitat
 - (4)Birth rate
- **120.** World Ozone Day is celebrated on
 - 5th June (1)
 - 22nd April (2)
 - 16th September (3)
 - 21st April (4)
- **121.** Which of the following is a secondary pollutant?
 - CO (1)
 - 03 (2)
 - SO_{2} (3)
 - (4)CO
- 122. Niche is
 - (1)all the biological factors in the organism's environment
 - (2)the functional role played by the organism where it lives
 - the range of temperature that the organism (3)needs to live
 - (4) the physical space where an organism lives
- **123.** What type of ecological pyramid would be obtained with the following data?

Secondary consumer : 120 g

Primary consumer : 60 g

Primary producer : 10 g

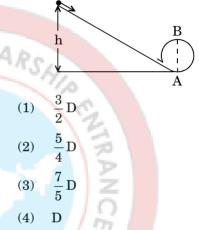
- (1)Inverted pyramid of biomass
- (2)Upright pyramid of biomass
- Upright pyramid of numbers (3)
- (4)Pyramid of energy
- 124. In stratosphere, which of the following elements acts as a catalyst in degradation of ozone and release of molecular oxygen ?
 - (1) Carbon
 - (2)Oxygen
 - Fe (3)
 - Cl (4)

125.	Casp	parian strips occur in	132.	Whi	ch one	is wro	ngly	matched ?
	(1)	Epidermis		(1)	Unifla	agellat	e gan	netes – <i>Polysiphonia</i>
	(2)	Endodermis		(2)	Unice	llular	orgar	nism – <i>Chlorella</i>
	(3)	Cortex		(3)	Gemn	na cup	s	– Marchantia
	(4)	Pericycle		(4)	Biflag	gellate	zoosp	oores – Brown algae
126.	Plan	ts having little or no secondary growth are	122	٨fto	r korw	aoma	follo	wed by meiosis, spores are
	(1)	Grasses	100.		duced e			• • •
	(2)	Cycads		(1)	Neuro	-	ubiy	
	(3)	Conifers		(2)		aromy	ces	
	(4)	Deciduous angiosperms		(3)	Agari	cus		
127.	Whi	ch of the following statements is <i>correct</i> ?		(4)	Altern	naria		
	(1)	Ovules are not enclosed by ovary wall in gymnosperms.	134.				-	in Column I with those in the <i>correct</i> option given
	(2)	Stems are usually unbranched in both	1.4	belo		and s	elect	the correct option given
		Cycas and Cedrus.	- LA	RS	Colum	n I		Column II
	(3)	Horsetails are gymnosperms.		a.	Herba	arium	i.	It is a place having a
	(4)	Selaginella is heterosporous, while Salvinia is homosporous.			1	21		collection of preserved plants and animals.
128.	Sele	ct the <i>wrong</i> stat <mark>eme</mark> nt :		b.	Key	3	ii.	A list that enumerates
	(1)	Cell wall is present in members of Fungi and Plantae.	5	5.	ncy	A		methodically all the species found in an area
	(2)	Mitochondria are the powerhouse of the cell in all kingdoms except Monera.				20		with brief description aiding identification.
	(3)	Pseudopodia are locomotory and feeding structures in Sporozoans.		c.	Muse		iii.	Is a place where dried and pressed plant specimens
	(4)	Mushrooms belong to Basidiomycetes.			$\langle \nabla$			mounted on sheets are
129.		ndary xylem and phloem in dicot stem are						kept.
	-	luced by		d.	Catal	ogue	iv.	A booklet containing a list
	(1)	Apical meristems	_					of characters and their
	(2)	Axillary meristems	19					alternates which are
	(3)	Phellogen Verscher einer						helpful in identification of
4.5.5	(4)	Vascular cambium				ե	_	various taxa.
130.		umatophores occur in		(1)	a i	b iv	с iii	d ii
	(1)	Halophytes		(1) (2)	ı iii	iv	i	ii
	(2)	Submerged hydrophytes		(2)	ii	iv	ı iii	
	(3)	Carnivorous plants		(4)	iii	ii	i	iv
101	(4)	Free-floating hydrophytes		(-)		**	•	± *
131.		et potato is a modified	135.			-	ains a	are present in
	(1)	Stem Rhizome		(1)	Musta			
	(2) (3)			(2)	Pinus Mong			
	(3) (4)	Tap root Adventitious root		(3) (4)	Mang			
	(4)	Auventitious root		(4)	Cycas			

ACHLA/BB/Page 15

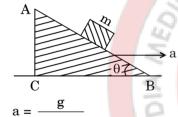
- 136. An inductor 20 mH, a capacitor 100 μ F and a 140. Unpolarised light is incident from air on a plane resistor 50 Ω are connected in series across a source of emf. $V = 10 \sin 314 t$. The power loss in the circuit is
 - (1)0.79 W
 - (2)1.13 W
 - (3)2.74 W
 - (4)0.43 W
- 137. A metallic rod of mass per unit length 0.5 kg m^{-1} is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
 - (1)7·14 A
 - (2)11·32 A
 - (3)14·76 A
 - (4)5.98 A
- 138. Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is
 - 40Ω (1)
 - (2) 500Ω
 - (3) 250Ω
 - (4) 25Ω
- 139. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains The work gravitational potential energy. required to do this comes from
 - (1)the current source
 - (2)the induced electric field due to the changing magnetic field
 - (3)the lattice structure of the material of the rod
 - (4)the magnetic field

- surface of a material of refractive index 'µ'. At a particular angle of incidence 'i', it is found that the reflected and refracted ravs are perpendicular to each other. Which of the following options is correct for this situation?
 - (1)Reflected light is polarised with its electric vector parallel to the plane of incidence


(2)
$$i = \tan^{-1}\left(\frac{1}{\mu}\right)$$

(3) $i = \sin^{-1}\left(\frac{1}{\mu}\right)$

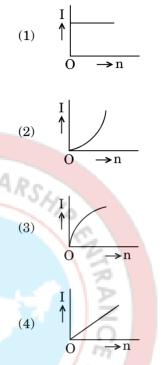
- (4) Reflected light is polarised with its electric vector perpendicular to the plane of incidence
- 141. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to
 - (1) 1.8 mm
 - (2)1.7 mm
 - (3) $2 \cdot 1 \text{ mm}$
 - (4)1.9 mm
- 142. An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
 - small focal length and large diameter (1)
 - (2)small focal length and small diameter
 - (3)large focal length and large diameter
 - large focal length and small diameter (4)


- 143. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
 - (1)30 cm away from the mirror
 - (2)36 cm towards the mirror
 - (3)30 cm towards the mirror
 - 36 cm away from the mirror (4)
- 144. An em wave is propagating in a medium with a velocity $\overrightarrow{V} = V \overrightarrow{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of SCAL the em wave will be along
 - (1)- z direction
 - (2)- x direction
 - (3)- v direction
 - (4)+ z direction
- 145. The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance
 - (1)0·138 H
 - (2)13·89 H
 - (3)1.389 H
 - (4) $138 \cdot 88 \text{ H}$
- 146. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
 - 60° (1)
 - (2)zero
 - (3) 30°
 - (4) 45°

- 147. A moving block having mass m, collides with another stationary block having mass 4m. The lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be
 - 0.5(1)
 - (2)0.4
 - 0.8(3)
 - (4)0.25
- 148. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to

- Three objects, A : (a solid sphere), B : (a thin 149. circular disk) and C : (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation
 - (1) $W_C > W_B > W_A$
 - (2) $W_A > W_C > W_B$
 - (3) $W_{B} > W_{A} > W_{C}$
 - $W_A > W_B > W_C$ (4)
- 150. Which one of the following statements is incorrect?
 - (1)Rolling friction is smaller than sliding friction.
 - (2)Coefficient of sliding friction has dimensions of length.
 - (3)Frictional force opposes the relative motion.
 - (4)Limiting value of static friction is directly proportional to normal reaction.

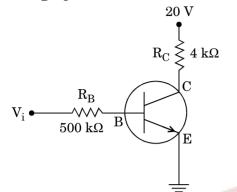
- 151. A toy car with charge q moves on a frictionless 155. A battery consists of a variable number 'n' of horizontal plane surface under the influence of a uniform electric field \vec{E} . Due to the force $q\vec{E}$, its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively
 - (1)2 m/s, 4 m/s
 - 1.5 m/s, 3 m/s(2)
 - 1 m/s, 3.5 m/s (3)
 - 1 m/s, 3 m/s (4)
- 152. A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is

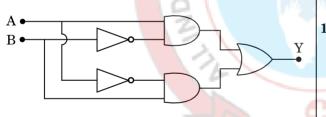

- (1)cosec 6
- (2) $a = g \tan \theta$
- (3) $a = g \cos \theta$

(4)
$$a = \frac{g}{\sin \theta}$$

153. The moment of the force, $\vec{F} = 4\hat{i} + 5\hat{j} - 6\hat{k}$ at (2, 0, -3), about the point (2, -2, -2), is given by

- (1) $-8\hat{i} 4\hat{j} 7\hat{k}$ (2) $-7\hat{i} - 4\hat{j} - 8\hat{k}$ (3) $-7\hat{i} - 8\hat{j} - 4\hat{k}$ (4) $-4\hat{i} - \hat{j} - 8\hat{k}$
- 154. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is
 - (1)0.521 cm
 - (2)0.529 cm
 - 0.023 cm (3)
 - (4)0.525 cm


identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?


- **156.** A carbon resistor of (47 ± 4.7) k Ω is to be marked with rings of different colours for its identification. The colour code sequence will be
 - (1)Violet – Yellow – Orange – Silver
 - (2)Green - Orange - Violet - Gold
 - (3)Yellow – Green – Violet – Gold
 - (4)Yellow - Violet - Orange - Silver
- 157. A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is
 - (1)10
 - (2)9
 - (3)20
 - (4)11

ACHLA/BB/Page 18

158. In the circuit shown in the figure, the input voltage V_i is 20 V, $V_{BE} = 0$ and $V_{CE} = 0$. The values of I_B , I_C and β are given by **161.** An electron of mass m with an initial velocity $\overrightarrow{V} = V_0 \hat{i} \quad (V_0 > 0)$ enters an electric field $\overrightarrow{V} = V_0 \hat{i} \quad (V_0 > 0)$ enters an electric field $\overrightarrow{V} = V_0 \hat{i} \quad (V_0 > 0)$ enters of $\overrightarrow{V} = V_0 \hat{i} \quad (V_0 = V_0) \hat{i} \quad$

- (1) $I_B = 40 \ \mu A$, $I_C = 10 \ mA$, $\beta = 250$
- (2) $I_B = 40 \ \mu A$, $I_C = 5 \ mA$, $\beta = 125$
- (3) $I_B = 20 \ \mu A$, $I_C = 5 \ mA$, $\beta = 250$
- (4) $I_B = 25 \ \mu A$, $I_C = 5 \ mA$, $\beta = 200$
- 159. In the combination of the following gates the output Y can be written in terms of inputs A and B as

- (1) $\overline{\mathbf{A} \cdot \mathbf{B}}$
- (2) $\overline{A+B}$
- (3) $\overline{\mathbf{A} \cdot \mathbf{B}} + \mathbf{A} \cdot \mathbf{B}$
- (4) $\mathbf{A} \cdot \mathbf{\overline{B}} + \mathbf{\overline{A}} \cdot \mathbf{B}$
- 160. In a p-n junction diode, change in temperature due to heating
 - (1) affects only reverse resistance

 - (3) does not affect resistance of p-n junction
 - $(4) \quad affects \ only \ forward \ resistance$

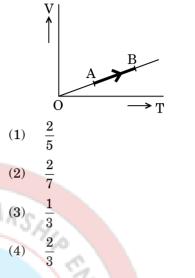
An electron of mass m with an initial velocity $\overrightarrow{V} = V_0 \hat{i} \ (V_0 > 0)$ enters an electric field $\overrightarrow{E} = -E_0 \hat{i} \ (E_0 = \text{constant} > 0)$ at t = 0. If λ_0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is

(1)
$$\frac{\lambda_0}{\left(1 + \frac{eE_0}{mV_0}t\right)}$$

(2)
$$\lambda_0$$

(3)
$$\lambda_0 t$$

(4)
$$\lambda_0 \left(1 + \frac{eE_0}{mV_0}t\right)$$

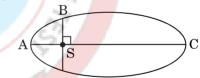

- 162. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is

CHC

- 163. For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is
 - (1) 20
 (2) 15
 - (3) 30
 - (4) 10
- 164. When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_1 . When the frequency of the incident radiation is increased to $5v_0$, the maximum velocity of electrons emitted from the same plate is v_2 . The ratio of v_1 to v_2 is
 - (1) 1:2(2) 2:1
 - (2) 2:1
 - (3) 4:1
 - (4) 1:4

- 165. A tuning fork is used to produce resonance in a 169. The volume (V) of a monatomic gas varies with glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - (1)330 m/s
 - (2)300 m/s
 - (3)350 m/s
 - (4)339 m/s
- 166. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
 - (1)independent of the distance between the plates.
 - inversely proportional to the distance (2)between the plates.
 - proportional to the square root of the (3)distance between the plates.
 - (4)linearly proportional to the distance between the plates.
- 167. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is
 - (1)smaller
 - (2)equal
 - (3)10 times greater
 - (4)5 times greater
- 168. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s² at a distance of 5 m from the mean |172. The efficiency of an ideal heat engine working position. The time period of oscillation is
 - (1) $2\pi s$
 - (2) $1 \mathrm{s}$
 - (3) $2 \mathrm{s}$
 - (4) πs

its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is


- 170. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is
 - $13 \cdot 2$ cm (1)
 - (2)16 cm
 - 12.5 cm (3)
 - (4)8 cm
- 171. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere? (Given:

Mass of oxygen molecule (m) = 2.76×10^{-26} kg Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$

- (1) $2.508 \times 10^4 \text{ K}$
- (2) 1.254×10^4 K
- (3) 5.016×10^4 K
- $8.360 \times 10^4 \text{ K}$ (4)
- between the freezing point and boiling point of water, is
 - (1)26.8%
 - (2)12.5%
 - 6.25%(3)
 - (4)20%

- 173. The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4}\lambda_0$, the power radiated by it becomes nP. The value of n is
 - (1) $\frac{3}{4}$
 - (2) $\frac{81}{256}$ (2) $\frac{256}{256}$
 - (3) $\frac{250}{81}$
 - $(4) \frac{4}{3}$
- 174. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount ?
 - (1) 9 F
 - (2) F
 - (3) 4 F
 - (4) 6 F
- 175. A small sphere of radius 'r' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
 - $(1) r^3$
 - (2) r^4
 - (3) r^5
 - (4) r^2
- 176. A sample of 0.1 g of water at 100°C and normal pressure $(1.013 \times 10^5 \text{ Nm}^{-2})$ requires 54 cal of heat energy to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is
 - (1) 104·3 J
 - (2) 84·5 J
 - (3) 42·2 J
 - (4) 208·7 J

- **177.** A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere ?
 - (1) Angular velocity
 - (2) Angular momentum
 - (3) Rotational kinetic energy
 - (4) Moment of inertia
- **178.** A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (K_t) as well as rotational kinetic energy (K_r) simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is
 - (1) 7:10
 - (2) 2:5
 - (3) 10:7
 - (4) 5:7
- 179. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are K_A , K_B and K_C , respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

- (1) $K_A < K_B < K_C$
- (2) $K_B > K_A > K_C$
- $(3) \quad \mathbf{K}_{\mathbf{B}} < \mathbf{K}_{\mathbf{A}} < \mathbf{K}_{\mathbf{C}}$
- $(4) \quad \mathbf{K}_{\mathbf{A}} > \mathbf{K}_{\mathbf{B}} > \mathbf{K}_{\mathbf{C}}$
- **180.** If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is *not* correct ?
 - (1) Raindrops will fall faster.

 - (3) Time period of a simple pendulum on the Earth would decrease.
 - (4) Walking on the ground would become more difficult.

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

Read carefully the following instructions :

- 1. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 3. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. **Cases where a** candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 4. Use of Electronic/Manual Calculator is prohibited.
- 5. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 7. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

					ANS	QNO	ANS	QNC	ANS	
		3	L		1	91		136	1	
2	2					92		137	4	
						93		•		
		1	I			94				
 !	5				1	95	4	140	2	
	6 i	2		51		96		141	1	
					3	97	4	142	2	
		3				98		143	3	
						99		144		
1(2	L		3	100				
1	1 1			56	4	101	2	146	2	
	2	1	L	57	2	102	4	147	1	
						103		148		
						104		149		
						105				
						106		151		SCHULARS
						107		152	10.23	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
								153		
						109		154		
								64.ji	<i>+</i>	<u>1, j</u>
						110		155		
						111		156		
						112				
						113		158		
						114		159		
			 			115		160		
20		4 	 	71	1	116	2	161	*****	
								162		
						118				÷ 🥂 🦼
29										
						120				terr
						121				
32	2 :									
						123				
34						124				
3	5	2		80	1	125	1	170	2	
						126		171		
						127		172		
38	3	3		83	2	128	1	173	4	
39						129		174	2	
4(130		175	4	
43	1	3			4	131	1		4	
42				87	4	132	2	177		
43						133		178		
					1	1 1 2 4				

NTRANCE

ACHLA

This Booklet contains **24** pages.

Test Booklet Code

Do not open this Test Booklet until you are asked to do so.

Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions :

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **Side-1** and **Side-2** carefully with **blue/black** ball point pen only.
- 2. The test is of **3 hours** duration and this Test Booklet contains **180** questions. Each question carries **4** marks. For each correct response, the candidate will get **4** marks. For each incorrect response, **one mark** will be deducted from the total scores. The maximum marks are 720.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **CC**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is *not* permissible on the Answer Sheet.

Name of the Candidate (in Capitals) :	
Roll Number : in figures	
: in words	
Centre of Examination (in Capitals) :	
Candidate's Signature :	_ Invigilator's Signature :
Facsimile signature stamp of	
Centre Superintendent :	

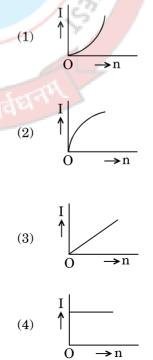
1.	Niche is	7.	Offsets are produced by			
	(1) the functional role played by the organism		(1) Parthenogenesis			
	where it lives		(2) Parthenocarpy			
	(2) the range of temperature that the organism needs to live		(3) Mitotic divisions(4) Meiotic divisions			
	(3) the physical space where an organism lives	8.	The experimental proof for semiconservative			
	(4) all the biological factors in the organism's environment		replication of DNA was first shown in a (1) Virus			
-			(2) Plant			
2.	Which of the following is a secondary pollutant?		(3) Bacterium			
	(1) O ₃		(4) Fungus			
	(2) SO ₂	9.	Select the <i>correct</i> match :			
	(3) CO ₂		(1) Francois Jacob and – <i>Lac</i> operon Jacques Monod			
	(4) CO		(2) Matthew Meselson – Pisum sativum			
3.	In stratosphere, which of the following elements	111	and F. Stahl			
	acts as a catalyst in degradation of ozone and		(3) Alfred Hershey and – TMV			
	release of molecular oxygen ?		Martha Chase			
	(1) Oxygen		(4) Alec Jeffreys – Streptococcus			
	(2) Fe (3) Cl	10.	Which of the following has proved helpful in			
	$\begin{array}{c} (3) & C1 \\ (4) & Carbon \end{array}$	10.	preserving pollen as fossils?			
		12	(1) Sporopollenin			
4.	World Ozone Day is celebrated on		(2) Oil content			
	(1) 22 nd April	1	(3) Cellulosic intine			
	(2) 16 th September	11	(4) Pollenkitt			
	(3) 21 st April	11.	Which of the following pairs is <i>wrongly</i> matched?			
			(1) T.H. Morgan : Linkage			
	(4) 5 th June	5	(2) XO type sex : Grasshopper			
5.	What type of ecological pyramid would be	1	determination			
	obtained with the following data ? Secondary consumer : 120 g	175	 (3) ABO blood grouping : Co-dominance (4) Starch synthesis in pea : Multiple alleles 			
	Primary consumer : 60 g	12.	(4) Starch synthesis in pea : Multiple alleles Which of the following flowers only once in its			
	Primary producer : 10 g	14.	life-time ?			
	(1) Upright pyramid of biomass		(1) Papaya			
	(2) Upright pyramid of numbers		(2) Mango(3) Jackfruit			
	(3) Pyramid of energy		(4) Bamboo species			
	(4) Inverted pyramid of biomass	13.	Select the <i>correct</i> statement :			
6.	Natality refers to		(1) Transduction was discovered by S. Altman.			
	(1) Number of individuals entering a habitat		(2) Spliceosomes take part in translation.			
	(2) Number of individuals leaving the habitat		(3) Punnett square was developed by a British			
	(3) Birth rate		scientist.			
	(4) Death rate		(4) Franklin Stahl coined the term "linkage".			

14.	The Golgi complex participates in	22.	Mat	ch the items	oiven	in Column I with those in
	(1) Activation of amino acid				-	the <i>correct</i> option given
	(2) Respiration in bacteria		belo			
	(3) Formation of secretory vesicles			Column I		Column II
	(4) Fatty acid breakdown		a.	Herbarium	÷	It is a place having a
15.	The stage during which separation of the paired		а.	Herbarium	1.	collection of preserved
10.	homologous chromosomes begins is					plants and animals.
	(1) Zygotene		b.	Key	ii.	A list that enumerates
	(2) Diakinesis		υ.	цеу	11.	methodically all the
	(3) Diplotene					species found in an area
	(4) Pachytene					with brief description
16.	Stomatal movement is <i>not</i> affected by					aiding identification.
	(1) CO_2 concentration		c.	Museum	iii.	Is a place where dried and
	(2) O_2 concentration			in apo ann		pressed plant specimens
	(3) Light					mounted on sheets are
	(4) Temperature	r L A	Ro			kept.
17.	 (2) O₂ concentration (3) Light (4) Temperature Stomata in grass leaf are (1) Barrel shaped (2) Parten ruler 		d.	Catalogue	iv.	A booklet containing a list
	(1) Barrel shaped			No.		of characters and their
	(2) Rectangular			12		alternates which are
	(3) Kidney shaped					helpful in identification of
	(4) Dumb-bell shaped			315		various taxa.
18.	Which of the following is not a product of light	12		a b	с	d
	reaction of photosynt <mark>hes</mark> is ?		(1)	iii iv	i	ii
	(1) Oxygen	Y	(2)	ii iv	iii	i
	(2) NADPH		(3)	iii ii	i	iv
	(3) NADH		(4)	i iv	iii	ii
10	(4) ATP	23.	Whi	ch one is wro	nglv	matched ?
19.	Which of the following is true for nucleolus ?		(1)	Unicellular		
	(1) It is a site for active ribosomal RNA synthesis.	2	(2)	Gemma cup	-	– Marchantia
	(2) It takes part in spindle formation.	-	(3)	Biflagellate	zoosp	oores – Brown algae
	(3) It is a membrane-bound structure.	. 44	(4)	Uniflagellat	e gan	netes – Polysiphonia
	(4) Larger nucleoli are present in dividing cells.	2.4			0 11	
20.	Which among the following is <i>not</i> a prokaryote ?	24.				wed by meiosis, spores are
	(1) Oscillatoria		(1)	luced exogeno Saccharomy	•	111
	(2) Nostoc		(1) (2)	Agaricus	les	
	(3) Mycobacterium		(2) (3)	Alternaria		
	(4) Saccharomyces		(4)	Neurospora		
21.	The two functional groups characteristic of		. /			
	sugars are	25.			ains a	are present in
	(1) carbonyl and hydroxyl		(1)	Pinus		
	(2) carbonyl and phosphate		(2)	Mango		
	(3) carbonyl and methyl		(3)	Cycas		
	(4) hydroxyl and methyl		(4)	Mustard		

26.	vect	ch of the following is commonly used as a or for introducing a DNA fragment in human phocytes ?	32.	What is the role of NAD⁺ in cellular respiration ?(1) It is the final electron acceptor for anaerobic
	(1)	pBR 322		respiration.
	(2)	λ phage		(2) It is a nucleotide source for ATP synthesis.
	(3)	Ti plasmid		(3) It functions as an electron carrier.
	(4)	Retrovirus		(4) It functions as an enzyme.
			33.	Which one of the following plants shows a very
27.	com	ew' variety of rice was patented by a foreign pany, though such varieties have been ent in India for a long time. This is related to		close relationship with a species of moth, where none of the two can complete its life cycle without the other ?
	(1)	Basmati		(1) Viola
	(2)	Lerma Rojo		(2) Banana
	(3)	Sharbati Sonora		(3) Yucca
	(4)	Co-667		(4) Hydrilla
28.		of bioresources by multinational companies	34.	Pollen grains can be stored for several years in
		organisations without authorisation from the		liquid nitrogen having a temperature of
		erned country and its people is called		$(1) - 160^{\circ}C$
	(1)	Bioexploitation		(2) $-196^{\circ}C$
	(2)	Biodegradation		$(3) - 80^{\circ}C$
	(3)	Biopiracy		$(4) - 120^{\circ}C$
	(4)	Bio-infringement	35.	In which of the following forms is iron absorbed
29.	Sele	ct the <i>correct</i> match :		by plants?
	(1)	G. Mendel C - Transformation	14	(1) Both ferric and ferrous
	(2)	T.H. Morgan		(2) Free element
	(3)	$F_2 \times \text{Recessive parent}$ — Dihybrid cross		(3) Ferrous(4) Ferric
	(4)	Ribozyme – Nucleic acid	9.0	
			36.	Double fertilization is(1)Syngamy and triple fusion
30.		correct order of steps in Polymerase Chain ction (PCR) is	B	 Syngamy and triple fusion Fusion of two male gametes with one egg
	(1)	Denaturation, Annealing, Extension	-	(3) Fusion of one male gamete with two polar
	(1) (2)	Denaturation, Extension, Annealing	-सर्व	nuclei
	(2)	Annealing, Extension, Denaturation		(4) Fusion of two male gametes of a pollen tube
	(4)	Extension, Denaturation, Annealing		with two different eggs
	(1)	Extension, Denaturation, Mineaning	37.	Oxygen is <i>not</i> produced during photosynthesis by
31.		India, the organisation responsible for		(1) Chara
		ssing the safety of introducing genetically ified organisms for public use is		(2) Cycas
		č		(3) Nostoc
	(1)	Genetic Engineering Appraisal Committee (GEAC)		(4) Green sulphur bacteria
	(2)	Research Committee on Genetic	38.	Which of the following elements is responsible for
	(4)	Manipulation (RCGM)		maintaining turgor in cells ?
	(3)	Council for Scientific and Industrial		 Calcium Potassium
	(0)	Research (CSIR)		(2) Potassium(3) Sodium
	(4)	Indian Council of Medical Research (ICMR)		(4) Magnesium
			1	

39.	Pne	umatophores occur in	46.	Niss	l bodies are mainly composed of
	(1)	Submerged hydrophytes		(1)	Free ribosomes and RER
	(2)	Carnivorous plants		(2)	Nucleic acids and SER
	(3)	Free-floating hydrophytes		(3)	DNA and RNA
	(4)	Halophytes		(4)	Proteins and lipids
40.	Sele	ct the <i>wrong</i> statement :	47.	Whi	ch of these statements is <i>incorrect</i> ?
	(1)	Mitochondria are the powerhouse of the cell in all kingdoms except Monera.		(1)	Oxidative phosphorylation takes place in outer mitochondrial membrane.
	(2)	Pseudopodia are locomotory and feeding structures in Sporozoans.		(2)	Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
	(3)	Mushrooms belong to Basidiomycetes.		(3)	Glycolysis occurs in cytosol.
	(4)	Cell wall is present in members of Fungi and Plantae.		(4)	Enzymes of TCA cycle are present in
41	a			(-)	mitochondrial matrix.
41.		ondary xylem and phloem in dicot stem are luced by Axillary meristems Phellogen Vascular cambium	48.	Man	y ribosomes may associate with a single
	(1)	Axillary meristems	10.0	mRI	NA to form multiple copies of a polypeptide
	(2)	Phellogen			ltaneously. Such strings of ribosomes are
	(3)	Vascular cambium			ned as
	(4)	Apical meristems		(1)	Nucleosome
42.	Swe	et potato is a modified S		(2)	Plastidome
	(1)	Rhizome	15-	(3)	Polyhedral bodies
	(2)	Tap root	24	(4)	Polysome
	(3)	Adventitious root	49.		ch of the following terms describe human
	(4)	Stem			tition?
43.	Whi	ch of the following statements is <i>correct</i> ?		(1)	Pleurodont, Diphyodont, Heterodont
	(1)	Stems are usually unbranched in both		(2)	Pleurodont, Monophyodont, Homodont
	(-)	Cycas and Cedrus.		(3)	Thecodont, Diphyodont, Heterodont
	(2)	Horsetails are gymnosperms.		(4)	Thecodont, Diphyodont, Homodont
	(3)	Selaginella is heterosporous, while Salvinia is homosporous.	50.		ch of the following events does <i>not</i> occur in ch endoplasmic reticulum ?
	(4)	Ovules are not enclosed by ovary wall in		(1)	Phospholipid synthesis
		gymnosperms.		(2)	Cleavage of signal peptide
44.	-	parian strips occur in		(3)	Protein glycosylation
	(1)	Endodermis		(4)	Protein folding
	(2)	Cortex	51.	Solo	ct the <i>incorrect</i> match :
	(3)	Pericycle	J1.	(1)	Polytene – Oocytes of amphibians
	(4)	Epidermis		(1)	chromosomes
45.		ts having little or no secondary growth are		(2)	Submetacentric – L-shaped chromososmes
	(1)	Cycads			chromosomes
	(2)	Conifers		(3)	Allosomes – Sex chromosomes
	(3)	Deciduous angiosperms		(4)	Lampbrush – Diplotene bivalents
	(4)	Grasses			chromosomes

52.	Which of the following is an amino acid derived	
	hormone?	(1) pre-reproductive individuals are less than the reproductive individuals.
	 Estriol Estradiol 	(2) reproductive and pre-reproductive individuals are equal in number.
	(3) Ecdysone	(3) reproductive individuals are less than the post-reproductive individuals.
	(4) Epinephrine	(4) pre-reproductive individuals are more than the reproductive individuals.
53.	 Which of the following structures or regions is <i>incorrectly</i> paired with its function ? (1) Corpus callosum : band of fibers connecting left and right cerebral hemispheres. 	
	(2) Hypothalamus : production of releasing hormones and regulation of temperature,	c. Snow blindness iii. Nutrient enrichment d. Jhum cultivation iv. Waste disposal a b c d
	 (3) Limbic system : consists of fibre tracts that interconnect different regions of brain; controls 	(1) i ii iv iii (2) iii iv i ii (3) i iii iv ii (4) ii i iii iv
54.	 (4) Medulla oblongata : controls respiration and cardiovascular reflexes. Which of the following hormones can play a 	 58. Which part of poppy plant is used to obtain the drug "Smack"? (1) Leaves (2) Roots (3) Latex (4) Flowers
94.	significant role in osteoporosis ?	59. Which one of the following population
	 Parathyroid hormone and Prolactin Estrogen and Parathyroid hormone 	interactions is widely used in medical science for the production of antibiotics ?
	(3) Progesterone and Aldosterone	(1) Amensalism
	(4) Aldosterone and Prolactin	(2) Parasitism(3) Mutualism
55.	The transparent lens in the human eye is held in its place by (1) smooth muscles attached to the ciliary body	 (4) Commensalism 60. All of the following are included in 'Ex-situ conservation' <i>except</i> (1) Seed banks
	 (2) smooth muscles attached to the iris (2) ligaments attached to the irig 	(1) Seed banks (2) Botanical gardens
	(3) ligaments attached to the iris(4) ligaments attached to the ciliary body	(3) Sacred groves(4) Wildlife safari parks

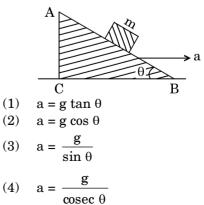

61.	help (1) (2) (3) (4)	ch of the following gastric cells indirectly in erythropoiesis? Parietal cells Goblet cells Mucous cells Chief cells chief cells	65.	 AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA ? (1) UCCAUAGCGUA (2) ACCUAUGCGAU (3) UGGTUTCGCAT (4) AGGUAUCGCAU A woman has an X-linked condition on one of her
02.		umn II and select the <i>correct</i> option given		X chromosomes. This chromosome can be inherited by
	belo	w :		(1) Both sons and daughters
		Column I Column II		(2) Only grandchildren
	a.	Fibrinogen i. Osmotic balance		(3) Only sons
	b.	Globulin ii. Blood clotting	LA	(4) Only daughters
	c.	Albumin iii. Defence mechanism	67.	Match the items given in Column I with those in
		a b c		Column II and select the <i>correct</i> option given below :
	(1)	ii iii i 🖉		Column I Column II
	(2)	i iii ii S		a. Proliferative Phase i. Breakdown of
	(3)	i ii iii 🧹 🔍	12	endometrial
	(4)			b. Secretory Phase ii. Follicular Phase
63.	Calc		2	c. Menstruation iii. Luteal Phase
	cont	raction because it		a b c
	(1)	prevents the formation of bonds between		(1) iii i ii
		the myosin cross bridges and the actin filament.	5	(2) ii iii i
	(2)	detaches the myosin head from the actin		(3) i iii ii
	(2)	filament.	TF	(4) iii ii i
	(3)	activates the myosin ATPase by binding to it.	68.	According to Hugo de Vries, the mechanism of evolution is
	(4)	binds to troponin to remove the masking of		(1) Minor mutations
		active sites on actin for myosin.		(2) Phenotypic variations
64.	Whi	ch of the following is an occupational		 (3) Saltation (4) Multiple step sustations
	resp	iratory disorder ?		(4) Multiple step mutations
	(1)	Emphysema	69.	All of the following are part of an operon <i>except</i>
	(2)	Botulism		(1) a promoter(2) an enhancer
	(3)	Silicosis		(2) an enhancer(3) structural genes
	(4)	Anthracis		(4) an operator

70.	Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively ?						73.		mones secreted by the placenta to maintain gnancy are
	(1)	Decre	· -	respi	ratory	surface; es		(1)	hCG, progestogens, estrogens, glucocorticoids
	(2)	Incre Infla	ased mmatio		ratory onchiole	surface; es		(2)	hCG, hPL, progestogens, estrogens
	(3)	Incre	ased nu	mber	of bron	chioles; Increased		(3)	hCG, hPL, estrogens, relaxin, oxytocin
	(4)	-	ratory s mmatio			ioles; Decreased		(4)	hCG, hPL, progestogens, prolactin
		respi	ratory s	urface	•		74.	The	contraceptive 'SAHELI'
71.			-			nn I with those in rect option given		(1)	is a post-coital contraceptive.
	belo							(2)	is an IUD.
		Colur	nn I			olumn II		(3)	increases the concentration of estrogen and
	a.	Tricu	spid val	ve		tween left atrium	LA	P.	prevents ovulation in females.
	L	D:				d left ventricle		(4)	blocks estrogen receptors in the uterus,
	b.	Dicus	spid valv	/e		tween right ntricle and			preventing eggs from getting implanted.
					pu	lmonary artery	75.	The	difference between spermiogenesis and
	c.	Semi	lunar va	alve		tween right	10.		miation is
						ium and right htricle	1	(1)	In spermiogenesis spermatozoa are formed,
		a	b	с	V er		2	(1)	while in spermiation spermatozoa are
	(1)	ii	i	iii	ā		Na 🦯		released from sertoli cells into the cavity of
	(2)	i	ii	iii	Z				seminiferous tubules.
	(3)	i	iii	ii	10			(2)	In spermiogenesis spermatozoa from sertoli
	(4)	iii	i	ii		2			cells are released into the cavity of
72.	Mat	ch the	items g	iven i	n Colun	nn I with those in	-		seminiferous tubules, while in spermiation
	Colu	ımn II				rect option given			spermatozoa are formed.
	belo	w : Colui				Column II		(3)	In spermiogenesis spermatozoa are formed,
	0		volume		i.	2500 - 3000 mL	- su-		while in spermiation spermatids are formed.
	a. b.		ratory F			2500 = 3000 mL 1100 = 1200 mL		(4)	In spermiogenesis spermatids are formed,
	υ.	volun	•	lesei v	с п.	1100 – 1200 IIIL		(4)	while in spermiation spermatozoa are
	c.	Expin volun	ratory R ne	eserve	e iii.	$500-550~\mathrm{mL}$			formed.
	d.	Resid	lual volu	ıme	iv.	1000 - 1100 mL	76.	The	amnion of mammalian embryo is derived
		a	b	с	d			fron	1
	(1)	iv	iii	ii	i			(1)	ectoderm and endoderm
	(2)	i	iv	ii	iii			(2)	mesoderm and trophoblast
	(3)	iii	i	iv	ii			(3)	endoderm and mesoderm
	(4)	iii	ii	i	iv			(4)	ectoderm and mesoderm

77.	 Which of the following animals does <i>not</i> underg metamorphosis ? (1) Starfish (2) N the 	⁰ 83.		umn II	-		n Column I with those in the <i>correct</i> option given
	(2) Moth			Colur	nn I		Column II
	(3) Tunicate(4) Earthworm		a.	Glyco	osuria	i.	Accumulation of uric acid in joints
78.	Which one of these animals is not homeotherm ?	a	b.	Gout		ii.	Mass of crystallised salts within the kidney
	(1) Psittacula		c.	Rena	l calculi	iii.	Inflammation in
	(2) Camelus						glomeruli
	(3) Chelone		d.		erular	iv.	Presence of glucose in
	(4) Macropus			neph	ritis		urine
79.	Which of the following features is used to identif		6	a	b	С	d
10.	a male cockroach from a female cockroach ?		(1)	iv	i	ii	iii
	(1) Presence of anal cerci		(2)	ií O	iii	i	iv
	(2) Forewings with darker tegmina		(3)	i	ii	iii	iv
	(3) Presence of caudal styles		(4)	iii	ii	iv	i
	(4) Presence of a boat shaped sternum on th	e 84.	Match the items given in Column I with those in				
	9 th abdominal segment	1 M 1					the <i>correct</i> option given
80.	Which of the following organisms are known a	5	belo	w:	0		
	chief producers in the oceans?			Colur	nn I		Column II
	(1) Euglenoids(2) Cyanobacteria			(Fund	ction)		(Part of Excretory
	(3) Diatoms			15	·//		System)
	(4) Dinoflagellates	5	a.	Ultra	filtratio	n	i. Henle's loop
		Q.	b.				ii. Ureter
81.	Ciliates differ from all other protozoans in	स		of urine			
	 (1) having two types of nuclei (2) using pseudopodia for capturing prey 		c.		sport of		iii. Urinary bladder
	(2) using pseudopoula for capturing prey(3) having a contractile vacuole for removin	7	_	urine			
	excess water	5	d.	Storage of urine		ine	iv. Malpighian corpuscle
	(4) using flagella for locomotion						
82.	Identify the vertebrate group of animals characterized by crop and gizzard in its digestive						v. Proximal convoluted tubule
02.				a	b	с	d
	system.		(1)				
	(1) Osteichthyes		(1)	v	iv	i	iii
	(2) Aves (2) $\mathbb{P}_{\mathcal{A}}$		(2)	v	iv	i	ii
	(3) Reptilia		(3)	iv	i	ii	iii
	(4) Amphibia		(4)	iv	v	ii	iii

- Among the following sets of examples for 91. 85. divergent evolution, select the *incorrect* option :
 - (1)Eye of octopus, bat and man
 - (2)Brain of bat, man and cheetah
 - (3)Heart of bat, man and cheetah
 - (4)Forelimbs of man. bat and cheetah
- 86. Conversion of milk to curd improves its nutritional value by increasing the amount of
 - (1)Vitamin E
 - (2)Vitamin B₁₂
 - (3)Vitamin A
 - (4)Vitamin D
- Which of the following characteristics represent 87. 'Inheritance of blood groups' in humans? ALSCH
 - Dominance a.
 - **Co-dominance** b.
 - Multiple allele c.
 - d. Incomplete dominance
 - Polygenic inheritance e.
 - (1)a, c and e
 - (2)b, d and e
 - (3)a. b and c
 - (4)b, c and e
- 88. Which of the following is **not** an autoimmune disease?
 - (1)Vitiligo
 - Alzheimer's disease (2)
 - (3)**Rheumatoid** arthritis
 - (4)Psoriasis
- 89. The similarity of bone structure in the forelimbs of many vertebrates is an example of
 - (1)Adaptive radiation
 - (2)Convergent evolution
 - (3)Analogy
 - (4)Homology
- 90. In which disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels?
 - (1)Amoebiasis
 - (2)**Ringworm** disease
 - (3)Ascariasis
 - (4)Elephantiasis

- A carbon resistor of (47 + 4.7) k Ω is to be marked with rings of different colours for its identification. The colour code sequence will be
- (1)Green - Orange - Violet - Gold
- Yellow Green Violet Gold (2)
- (3)Yellow - Violet - Orange - Silver
- (4)Violet - Yellow - Orange - Silver
- A set of 'n' equal resistors, of value 'R' each, are 92. connected in series to a battery of emf 'E' and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is
 - (1)9
 - (2)20
 - 11 (3)
 - (4)10
- 93. A battery consists of a variable number 'n' of identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?

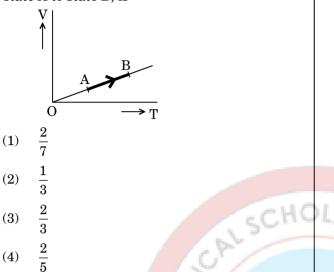


ACHLA/CC/Page 10

- 94. The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4}\lambda_0$, the power radiated by it becomes nP. The value of n is
 - (1) $\frac{81}{256}$
 - (2) $\frac{256}{81}$ (3) $\frac{4}{-}$
 - $(3) \frac{3}{3}$ (4) $\frac{3}{-}$
 - $(4) \frac{1}{4}$
- **95.** Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount ?
 - (1) F
 - (2) 4 F
 - (3) 6 F
 - (4) 9 F
- 96. A sample of 0.1 g of water at 100°C and normal pressure $(1.013 \times 10^5 \text{ Nm}^{-2})$ requires 54 cal of heat energy to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is
 - (1) 84·5 J
 - (2) $42 \cdot 2 J$
 - (3) 208·7 J
 - (4) 104·3 J
- **97.** A small sphere of radius 'r' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
 - (1) r^4 (2) r^5 (3) r^2 (4) r^3

The moment of the force, $\overrightarrow{F} = 4\hat{i} + 5\hat{j} - 6\hat{k}$ at (2, 0, -3), about the point (2, -2, -2), is given by (1) $-7\hat{i} - 4\hat{j} - 8\hat{k}$

- (1) $-7\hat{i} 8\hat{j} 4\hat{k}$ (2) $-7\hat{i} - 8\hat{j} - 4\hat{k}$
- $(3) \quad -4\,\hat{i}\,-\,\hat{j}\,-8\,\hat{k}$
- $(4) \quad -8\,\hat{i}\,-4\,\hat{j}\,-7\,\hat{k}$
- **99.** A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is
 - (1) 0.529 cm
 - (2) 0.053 cm
 - (3) 0.525 cm(4) 0.521 cm
- 100. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field \vec{E} . Due to the force q \vec{E} , its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively
 - (1) 1.5 m/s, 3 m/s
 - (2) 1 m/s, 3.5 m/s
 - (3) 1 m/s, 3 m/s
 - (4) 2 m/s, 4 m/s
- 101. A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is


- 102. An em wave is propagating in a medium with a velocity $\overrightarrow{V} = V \hat{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along
 - (1) x direction
 - (2) y direction
 - (3) + z direction
 - (4) z direction
- 103. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30° . One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
 - (1) zero
 - (2) **30°**
 - (3) 45°
 - (4) 60°
- 104. The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance
 - (1) 13·89 H
 - (2) 1.389 H
 - (3) 138·88 H
 - $(4) \quad 0{\cdot}138 \ H$
- 105. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
 - (1) 36 cm towards the mirror
 - (2) 30 cm towards the mirror
 - (3) 36 cm away from the mirror
 - (4) 30 cm away from the mirror

- **106.** The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
 - (1) 1:-2
 - $(2) \quad 2:-1$
 - (3) 1:-1
 - (4) 1:1
- 107. An electron of mass m with an initial velocity $\overrightarrow{V} = V_0 \hat{i} \ (V_0 > 0)$ enters an electric field $\overrightarrow{E} = -E_0 \hat{i} \ (E_0 = \text{constant} > 0)$ at t = 0. If λ_0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is

(1)
$$\lambda_0$$

(2) $\lambda_0 t$
(3) $\lambda_0 \left(1 + \frac{eE_0}{mV_0}t\right)$
(4) $\frac{\lambda_0}{\left(1 + \frac{eE_0}{mV_0}t\right)}$

- 108. When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_1 . When the frequency of the incident radiation is increased to $5v_0$, the maximum velocity of electrons emitted from the same plate is v_2 . The ratio of v_1 to v_2 is
 - (1) 2:1
 (2) 4:1
 - (2) 4.1 (3) 1:4
 - (4) 1:2
- **109.** For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is
 - (1) 15
 - (2) 30
 - (3) 10
 - (4) 20

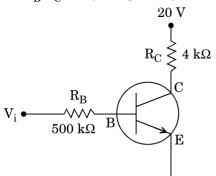
110. The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

- 111. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is
 - (1) 16 cm
 - (2) 12.5 cm
 - (3) 8 cm
 - (4) 13.2 cm
- 112. The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is
 - (1) 12.5%
 - $(2) \quad 6.25\%$
 - (3) 20%
 - (4) 26.8%
- **113.** At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere ? (Given :

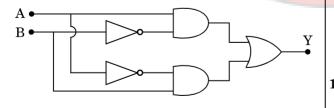
Mass of oxygen molecule (m) = 2.76×10^{-26} kg

Boltzmann's constant k_B = $1{\cdot}38\times10^{-23}~J~K^{-1})$

- $(1) \quad 1{\cdot}254\times 10^4 \ \mathrm{K}$
- (2) $5.016 \times 10^4 \text{ K}$
- (3) $8.360 \times 10^4 \text{ K}$
- $(4) \quad 2{\cdot}508\times 10^4 \ \mathrm{K}$


114. Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ '. At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation ?

(1)
$$i = \tan^{-1}\left(\frac{1}{\mu}\right)$$


(2)
$$i = \sin^{-1}\left(\frac{1}{\mu}\right)$$

- (3) Reflected light is polarised with its electric vector perpendicular to the plane of incidence
- (4) Reflected light is polarised with its electric vector parallel to the plane of incidence
- 115. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to
 - (1) **1.7 mm**
 - (2) 2.1 mm
 - (3) 1·9 mm
 - (4) 1·8 mm
- **116.** An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
 - (1) small focal length and small diameter
 - (2) large focal length and large diameter
 - (3) large focal length and small diameter
 - (4) small focal length and large diameter

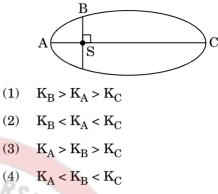
117. In the circuit shown in the figure, the input voltage V_i is 20 V, $V_{BE} = 0$ and $V_{CE} = 0$. The values of I_B , I_C and β are given by

- (1) $I_B = 40 \ \mu A$, $I_C = 5 \ mA$, $\beta = 125$
- (2) $I_B = 20 \ \mu A$, $I_C = 5 \ mA$, $\beta = 250$
- (3) $I_B = 25 \,\mu A$, $I_C = 5 \,m A$, $\beta = 200$
- (4) $I_B = 40 \ \mu A$, $I_C = 10 \ mA$, $\beta = 250$
- 118. In a p-n junction diode, change in temperature due to heating
 - (1) affects the overall V = I characteristics of p-n junction
 - (2) does not affect resistance of p-n junction
 - (3) affects only forward resistance
 - (4) affects only reverse resistance
- 119. In the combination of the following gates the output Y can be written in terms of inputs A and B as

- (1) $\overline{A+B}$
- (2) $\overline{\mathbf{A} \cdot \mathbf{B}} + \mathbf{A} \cdot \mathbf{B}$
- (3) A. \overline{B} + \overline{A} . B

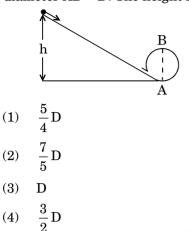
A.B

- A metallic rod of mass per unit length 0.5 kg m^{-1} is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
- (1) 11.32 A
- (2) 14·76 A
- (3) 5.98 A
- (4) 7.14 A
- **121.** An inductor 20 mH, a capacitor 100 μ F and a resistor 50 Ω are connected in series across a source of emf, V = 10 sin 314 t. The power loss in the circuit is
 - (1) 1·13 W


SCH

- (2) 2.74 W
- (3) 0.43 W
- (4) 0.79 W
- 122. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
 - (1) the induced electric field due to the changing magnetic field
 - (2) the lattice structure of the material of the rod
 - (3) the magnetic field
 - $(4) \quad the \ current \ source$
- 123. Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is
 - $(1) \quad 500 \ \Omega$
 - (2) 250 Ω
 - $(3) \quad 25 \ \Omega$
 - (4) 40 Ω

(4)


- 124. A tuning fork is used to produce resonance in a 128. The kinetic energies of a planet in an elliptical glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - 300 m/s (1)
 - (2)350 m/s
 - (3)339 m/s
 - (4)330 m/s
- **125.** The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
 - (1)inversely proportional to the distance between the plates.
 - proportional to the square root of the (2)distance between the plates.
 - (3)linearly proportional distance to the between the plates.
 - (4)independent of the distance between the plates.
- **126.** A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s^2 at a distance of 5 m from the mean position. The time period of oscillation is
 - (1) $1 \mathrm{s}$
 - (2) $2 \mathrm{s}$
 - (3) πs
 - (4) $2\pi s$
- 127. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is
 - (1)equal
 - (2)10 times greater
 - (3)5 times greater
 - (4)smaller

orbit about the Sun, at positions A, B and C are $K_{A},\ K_{B}$ and $K_{C},$ respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

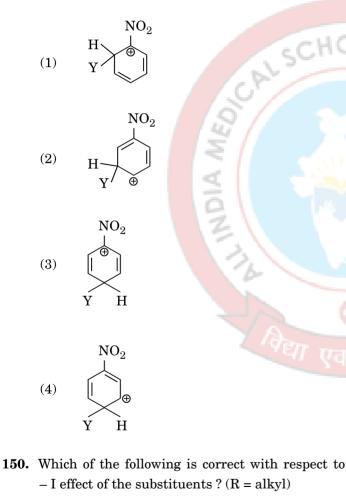
- 129. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (K_t) as well as rotational kinetic energy (K_r) simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is
 - 2:5(1)(2)10:7(3)5:7(4)7:10
- 130. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is *not* correct?
 - 'g' on the Earth will not change. (1)
 - (2)Time period of a simple pendulum on the Earth would decrease.
 - (3)Walking on the ground would become more difficult.
 - (4)Raindrops will fall faster.
- **131.** A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
 - (1)Angular momentum
 - (2)Rotational kinetic energy
 - (3)Moment of inertia
 - (4)Angular velocity

132. A body initially at rest and sliding along a **136.** Iron carbonyl, $Fe(CO)_5$ is frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to

- 133. Three objects, A : (a solid sphere), B : (a thin circular disk) and C : (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation
 - (1) $W_A > W_C > W_B$
 - $(2) \quad \mathbf{W}_{\mathrm{B}} > \mathbf{W}_{\mathrm{A}} > \mathbf{W}_{\mathrm{C}}$
 - $(3) \quad W_A > W_B > W_C$
 - $(4) \quad W_{\rm C} > W_{\rm B} > W_{\rm A}$
- 134. Which one of the following statements is incorrect?
 - Coefficient (1)of sliding friction has dimensions of length.
 - (2)Frictional force opposes the relative motion.
 - (3)Limiting value of static friction is directly proportional to normal reaction.
 - (4)Rolling friction is smaller than sliding friction.
- 135. A moving block having mass m, collides with another stationary block having mass 4m. The lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be
 - (1)0.4
 - (2)0.8
 - (3)0.25
 - (4)0.5

- - (1)dinuclear
 - (2)trinuclear
 - (3)mononuclear
 - tetranuclear (4)
 - 137. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the *correct* code :

			0	
	Colum	nn I		Column II
a.	C0 ³⁺		i.	$\sqrt{8}$ B.M.
b.	Cr^{3+}		ii.	$\sqrt{35}$ B.M.
C.	Fe^{3+}		iii.	$\sqrt{3}$ B.M.
d.	Ni ²⁺		iv.	$\sqrt{24}$ B.M.
1RS	2		v.	$\sqrt{15}$ B.M.
	a	b	с	d
(1)	iii	v	i	ii
(2)	iv	÷	ii	iii
(3)	i	ii	iii	iv
(4)	iv	v	ii	i


138. Which one of the following ions exhibits d-d transition and paramagnetism as well?

- MnO_{A}^{2-} (1)
- (2) MnO_{4}^{-}
- $Cr_2O_7^2$ (3) $\operatorname{CrO}_{4}^{2-}$ (4)
- 139. The geometry and magnetic behaviour of the complex $[Ni(CO)_4]$ are
 - tetrahedral geometry and paramagnetic (1)
 - (2)square planar geometry and paramagnetic
 - (3)tetrahedral geometry and diamagnetic
 - (4)square planar geometry and diamagnetic
- 140. The type of isomerism shown by the complex $[CoCl_2(en)_2]$ is
 - (1)Linkage isomerism
 - (2)Ionization isomerism
 - (3)Coordination isomerism
 - (4)Geometrical isomerism

141. Identify the major products P, Q and R in the following sequence of reactions: $MnO_{4}^{-} + C_{2}O_{4}^{2-} + H^{+} \longrightarrow Mn^{2+} + CO_{2} + H_{2}O$

	following sequence of reactions :		$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$		
	$Anhydrous \\ + CH_3CH_2CH_2Cl \xrightarrow{AlCl_3}$		the correct coefficients of the reactants for the balanced equation are		
			${\rm MnO_4^-}$ ${\rm C_2O_4^{2-}}$ ${\rm H^+}$		
	(i) O ₂		(1) 5 16 2		
	$P \xrightarrow{(i) O_2} Q + R$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	P Q R	144.	The correction factor 'a' to the ideal gas equation corresponds to		
	OH		(1) forces of attraction between the gas		
	(1) $CH(CH_3)_2$ $CH_3 - CO - CH_3$	A	molecules		
		LA	(2) electric field present between the gas molecules		
	.Cr		(3) volume of the gas molecules		
	CH(CH ₃) ₂ OH		(4) density of the gas molecules		
	(2) (2)	145.	Which one of the following conditions will favour maximum formation of the product in the reaction,		
		~	$A_2(g) + B_2(g) \rightleftharpoons X_2(g) \Delta_r H = -X kJ?$		
	CH ₂ CH ₂ CH ₃ CHO COOH	4	(1) High temperature and low pressure		
			(2) High temperature and high pressure		
	(3)		(3) Low temperature and low pressure(4) Low temperature and high pressure		
		146.	The bond dissociation energies of X_2 , Y_2 and XY		
	(4) (4)		are in the ratio of $1: 0.5: 1$. ΔH for the formation		
			of XY is -200 kJ mol^{-1} . The bond dissociation energy of X_2 will be		
			(1) 400 kJ mol^{-1}		
	Which of the following compounds can form a zwitterion ?		(2) 800 kJ mol ^{-1}		
142.			(3) 100 kJ mol^{-1}		
			(4) 200 kJ mol ^{-1}		
	(1) Glycine	147.	When initial concentration of the reactant is		
	(2) Benzoic acid		doubled, the half-life period of a zero order reaction		
	(3) Acetanilide		(1) remains unchanged		
	(4) Aniline		(2) is tripled(3) is doubled		
			(3) is doubled(4) is halved		
		ļ.			

- 148. Which of the following molecules represents the order of hybridisation sp², sp², sp, sp from left to right atoms ?
 - (1) $CH_3 CH = CH CH_3$
 - (2) $CH_2 = CH CH = CH_2$
 - (3) $CH_2 = CH C \equiv CH$
 - (4) $HC \equiv C C \equiv CH$
- **149.** Which of the following carbocations is expected to be most stable ?

- (1) $-NR_2 > -OR > -F$
- (2) $-NH_2 > -OR > -F$
- (3) $-NR_2 < -OR < -F$
- (4) $-NH_2 < -OR < -F$

- **151.** The correct difference between first- and second-order reactions is that
 - (1) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
 - (2) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed

 - (4) the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
- **152.** Among CaH_2 , BeH_2 , BaH_2 , the order of ionic character is
 - (1) $BaH_2 < BeH_2 < CaH_2$
 - (2) $BeH_2 < BaH_2 < CaH_2$
 - (3) $CaH_2 < BeH_2 < BaH_2$
 - (4) $\operatorname{BeH}_2 < \operatorname{CaH}_2 < \operatorname{BaH}_2$
- **153.** Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :

$$BrO_{4}^{-} \xrightarrow{1.82 \text{ V}} BrO_{3}^{-} \xrightarrow{1.5 \text{ V}} HBrO$$
$$Br^{-} \xleftarrow{1.0652 \text{ V}} Br_{2} \xleftarrow{1.595 \text{ V}}$$

Then the species undergoing disproportionation is

(1) HBrO

]

- (2) Br₂
- (3) BrO₄
- (4) BrO⁻₃
- **154.** In which case is the number of molecules of water maximum ?
 - $(1) \quad 10^{-3} \text{ mol of water}$
 - (2) 0.00224 L of water vapours at 1 atm and 273 K
 - $(3) \quad 0{\cdot}18 \ g \ of \ water$
 - (4) 18 mL of water

	 The compound A on treatment with Na gives B, and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order (1) C₂H₅OH, C₂H₅ONa, C₂H₅Cl (2) C₂H₅Cl, C₂H₆, C₂H₅OH (3) C₂H₅OH, C₂H₅Cl, C₂H₅Cl, C₂H₅ONa (4) C₂H₅OH, C₂H₆, C₂H₅Cl Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by 		 A mixture of 2·3 g formic acid and 4·5 g oxalic acid is treated with conc. H₂SO₄. The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be (1) 4·4 (2) 2·8 (3) 3·0 (4) 1·4 The difference between amylose and amylopectin is (1) Amylose is made up of glucose and galactose
	Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon	161.	(2) Amylopectin have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage (3) Amylose have $1 \rightarrow 4 \alpha$ -linkage and
	atoms. (A) is (1) CH_4 (2) $CH_3 - CH_3$ (3) $CH_2 = CH_2$ (4) $CH = CH$		1 → 6 β-linkage (4) Amylopectin have 1 → 4 α-linkage and 1 → 6 α-linkage
	(3) $CH_2 = CH_2$ (4) $CH = CH$		Which of the following oxides is most acidic in nature ? (1) CaO
157.	The compound C_7H_8 undergoes the following reactions :	142	 (2) BaO (3) BeO (4) MgO
	$C_7H_8 \xrightarrow{3 Cl_2 / \Delta} A \xrightarrow{Br_2 / Fe} B \xrightarrow{Zn / HCl} C$ The product 'C' is	162.	 Nitration of aniline in strong acidic medium also gives m-nitroaniline because (1) In acidic (strong) medium aniline is present
	(1) <i>p</i> -bromotoluene		(1) In ablance (strong) mouthin anima is present as anilinium ion.(2) In absence of substituents nitro group
	 (2) 3-bromo-2,4,6-trichlorotoluene (3) o-bromotoluene 	स	always goes to m-position. (3) In electrophilic substitution reactions
	(4) <i>m</i>-bromotoluene		amino group is meta directive.(4) In spite of substituents nitro group always goes to only m-position.
158.	 Which oxide of nitrogen is <i>not</i> a common pollutant introduced into the atmosphere both due to natural and human activity ? (1) NO (2) N₂O (3) NO₂ 	163.	 Regarding cross-linked or network polymers, which of the following statements is <i>incorrect</i>? (1) They contain strong covalent bonds in their polymer chains. (2) Examples are bakelite and melamine. (3) They are formed from bi- and tri-functional monomers. (4) They contain covalent bonds between
	(4) N_2O_5		various linear polymer chains.

164.	Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations: a. 60 mL $\frac{M}{10}$ HCl + 40 mL $\frac{M}{10}$ NaOH b. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH d. 100 mL $\frac{M}{10}$ HCl + 100 mL $\frac{M}{10}$ NaOH pH of which one of them will be equal to 1 ? (1) c (2) d		Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1s^2 2s^2 2p^3$, the simplest formula for this compound is (1) Mg ₃ X ₂ (2) Mg ₂ X (3) MgX ₂ (4) Mg ₂ X ₃ Iron exhibits bcc structure at room temperature. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature)
	(3) a		is
	(4) b	LA	$(1) \frac{1}{2}$
165.	On which of the following properties does the coagulating power of an ion depend ?		$3\sqrt{3}$
	(1) The sign of charge on the ion alone		(2) $\frac{3\sqrt{3}}{4\sqrt{2}}$
	(1) The sign of energy of the formation(2) Both magnitude and sign of the charge on the ion		(3) $\frac{4\sqrt{3}}{3\sqrt{2}}$
	(3) Size of the ion alone	12	
	(4) The magnitude of the charge on the ion alone		$(4) \frac{\sqrt{3}}{\sqrt{2}} \bigcirc \bigcirc$
166.	· ·	170.	Which one is a <i>wrong</i> statement ?
	2.42×10^{-3} gL ⁻¹ at 298 K. The value of its		(1) The value of m for d_{z^2} is zero.
	solubility product (K _{sp}) will be		(2) The electronic configuration of N atom is
	(Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$)		$1s^2$ $2s^2$ $2p_x^1 2p_y^1 2p_z^1$
	(1) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$	×	
	(2) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$	-3016	(3) An orbital is designated by three quantum
	(3) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$		numbers while an electron in an atom is designated by four quantum numbers.
	(4) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$		(4) Total orbital angular momentum of electron
167.	Given van der Waals constant for NH ₃ , H ₂ , O ₂		in 's' orbital is equal to zero.
	and CO_2 are respectively 4.17, 0.244, 1.36 and	171.	Consider the following species :
	3.59, which one of the following gases is most		CN^+ , CN^- , NO and CN
	easily liquefied ?		Which one of these will have the highest bond
	(1) CO_2		order?
	(2) O ₂		(1) CN (2) CN^+
	(3) H ₂		(2) CN^+ (3) CN^-
	(4) NH ₃		 (3) CN⁻ (4) NO
		<u> </u>	

ACHLA/CC/Page 20

172. Which of the following statements is *not* true for 178. In the reaction halogens? OH O⁻Na⁺ (1)Chlorine has the highest electron-gain enthalpy. + CHCl₃ + NaOH _____ CHO 0 (2)All but fluorine show positive oxidation states. the electrophile involved is (3)All are oxidizing agents. All form monobasic oxyacids. (4)(1)dichlorocarbene (:CCl₂) 173. Which one of the following elements is unable to dichloromethyl anion $(CHCl_2)$ (2)form MF_6^{3-} ion ? (3)formyl cation (CHO) (1)In (2)В dichloromethyl cation $(CHCl_2)$ (4)(3)Al (4)Ga 179. Carboxylic acids have higher boiling points than 174. In the structure of ClF_3 , the number of lone pairs ketones and even aldehydes. alcohols of of electrons on central atom 'Cl' is comparable molecular mass. It is due to their (1)three formation of intermolecular H-bonding (1)(2)four (2)more extensive association of carboxylic (3)two acid via van der Waals force of attraction (4)one (3)formation of carboxylate ion 175. Considering Ellingham diagram, which of the (4)formation of intramolecular H-bonding following metals can be used to reduce alumina? (1)Cu **180.** Compound A, $C_8H_{10}O$, is found to react with (2)Mg NaOI (produced by reacting Y with NaOH) and (3)Zn yields a yellow precipitate with characteristic (4)Fe smell. A and Y are respectively 176. The correct order of atomic radii in group 13 elements is B < Ga < Al < In < Tl(1)– OH and I_2 (1)B < Ga < Al < Tl < In(2)(3)B < Al < Ga < In < TlB < Al < In < Ga < Tl(4) $\rm CH-CH_3$ and $\rm I_2$ (2)177. The correct order of N-compounds in its OH decreasing order of oxidation states is (1)NH₄Cl, N₂, NO, HNO₃ – CH_2 – CH_2 – OH and I_2 (3)HNO₃, NH₄Cl, NO, N₂ (2)HNO₃, NO, NH₄Cl, N₂ (3) $- CH_2 - OH and I_2$ (4) H_3C -HNO3, NO, N2, NH4Cl (4)

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

Read carefully the following instructions :

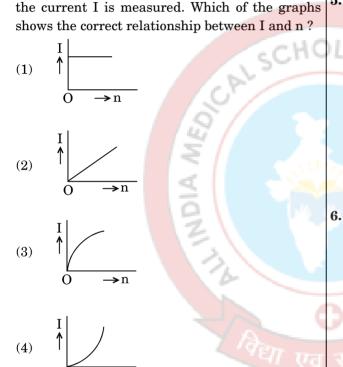
- 1. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 3. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. **Cases where a** candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 4. Use of Electronic/Manual Calculator is prohibited.
- 5. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 7. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

0NO	ANS	QNO	ANS	QNO	ANS	QNO	ANS	l
1	4	46	1	91	4	136	3	1
2	3	47	1	92	3	137	4	
3	4	48			4		4	1
4	2	49	1	94	3	139	1	1
5	2	50	3	95	1	140	3	l
6	1	51	4	96	3	141	4	l
7	3	52		97	3	142	2	l
8	4	53	2	98	4	143	1	l
					4		2	
10	3	55	3	100	3	145	4	l
					4			
					3		4	l
		58				148		1
		59		·				
					4		2	CHOLAR
		61			1	/		- Alla
		62			2		pheres and	
		63 64		·	3 1		4	
						h	3	
		65 66			3	155		
		 67			4			
					4		1	
		 69			4 1		1	
 25		70	2	115		160	2	
 26	1	71	4	116	4	161	1	- 12
 27	1	72		117	4	162	1	
28		73	4				1	
29		74		119		164	3	
30	2	75		120		165	3	14000
31		76	2		3	166		
32	1		3	122	1	167	4	
33	3	78	4	123		168	2	
34	4		3	124	3	169	3	
				125	3			
		81			1			
					1			
38	3	83	4	128	1	173	2	l
39 		84		129	3		4	
40	4	85	1	130	1	175	4	l
41 	2	86	3		1		4	l
42		87						
43 	2	88	4	133	3	178	3	l
44	1	89	1	134	1	179	4	I

ACHLA

This Booklet contains **24** pages.

Do not open this Test Booklet until you are asked to do so.


Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions :

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **Side-1** and **Side-2** carefully with **blue/black** ball point pen only.
- 2. The test is of **3 hours** duration and this Test Booklet contains **180** questions. Each question carries **4** marks. For each correct response, the candidate will get **4** marks. For each incorrect response, **one mark** will be deducted from the total scores. The maximum marks are 720.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **DD**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is *not* permissible on the Answer Sheet.

Name of the Candidate (in Capitals) :	
Roll Number : in figures	
: in words	
Centre of Examination (in Capitals) :	
Candidate's Signature : In	vigilator's Signature :
Facsimile signature stamp of	
Centre Superintendent :	

- 1. A carbon resistor of $(47 \pm 4.7) \text{ k}\Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be
 - (1) Violet Yellow Orange Silver
 - (2) Yellow Violet Orange Silver
 - (3) Yellow Green Violet Gold
 - $(4) \quad Green-\ Orange-\ Violet-\ Gold$
- 2. A battery consists of a variable number 'n' of identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?

- 3. A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is
 - (1) 10

0

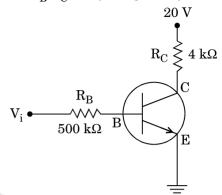
→n

- (2) 11
- (3) 20
- (4) 9

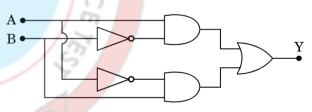
- An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is
- (1) smaller
- (2) 5 times greater
- (3) 10 times greater
- (4) equal

5.

- A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - (1) 330 m/s
 - (2) 339 m/s
 - (3) 350 m/s
 - (4) 300 m/s
- A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s^2 at a distance of 5 m from the mean position. The time period of oscillation is
 - (1) $2\pi s$
 - (2) π s
 - (3) 2 s
 - (4) 1 s
- The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
 - (1) independent of the distance between the plates.
 - (2) linearly proportional to the distance between the plates.
 - (3) proportional to the square root of the distance between the plates.
 - (4) inversely proportional to the distance between the plates.

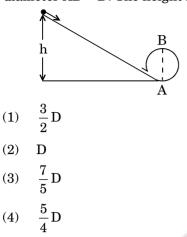

8. An electron of mass m with an initial velocity $\overrightarrow{V} = V_0 \stackrel{\land}{i} (V_0 > 0)$ enters an electric field $\overrightarrow{E} = -E_0 \stackrel{\land}{i} (E_0 = \text{constant} > 0)$ at t = 0. If λ_0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is

$$(1) \quad \frac{\lambda_0}{\left(1 + \frac{eE_0}{mV_0}t\right)}$$
$$(2) \quad \lambda_0 \left(1 + \frac{eE_0}{mV_0}t\right)$$


- $(3) \quad \lambda_0 \, t$
- $(4) \quad \lambda_0$
- **9.** When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_1 . When the frequency of the incident radiation is increased to $5v_0$, the maximum velocity of electrons emitted from the same plate is v_2 . The ratio of v_1 to v_2 is
 - (1) 1:2
 - (2) 1:4
 - (3) 4:1
 - (4) 2:1
- 10. For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is
 - (1) 20
 - (2) 10
 - (3) 30
 - (4) 15
- **11.** The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
 - (1) 1:1
 - (2) 1:-1
 - $(3) \quad 2:-1$

1:-2

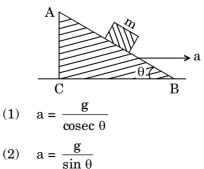
In the circuit shown in the figure, the input voltage V_i is 20 V, $V_{BE} = 0$ and $V_{CE} = 0$. The values of I_B , I_C and β are given by


- (1) $I_B = 40 \ \mu A, \ I_C = 10 \ mA, \ \beta = 250$
- (2) $I_B = 25 \,\mu A$, $I_C = 5 \,m A$, $\beta = 200$
- (3) $I_B = 20 \ \mu A$, $I_C = 5 \ mA$, $\beta = 250$
- (4) $I_B = 40 \ \mu A$, $I_C = 5 \ mA$, $\beta = 125$
- 13. In the combination of the following gates the output Y can be written in terms of inputs A and B as

- (1) A.B (2) A. $\overline{B} + \overline{A}$.B (3) $\overline{A \cdot B} + A \cdot B$
- $(4) \overline{A+B}$
- 14. In a p-n junction diode, change in temperature due to heating
 - (1) affects only reverse resistance
 - (2) affects only forward resistance
 - (3) does not affect resistance of p-n junction

(4)

15. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to

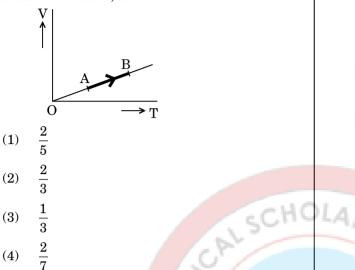


- 16. Three objects, A : (a solid sphere), B : (a thin circular disk) and C : (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation
 - $(1) \quad W_{\rm C} > W_{\rm B} > W_{\rm A}$
 - (2) $W_A > W_B > W_C$
 - $(3) \qquad W_B > W_A > W_C$
 - $(4) \quad W_A > W_C > W_B$
- 17. A moving block having mass m, collides with another stationary block having mass 4m. The lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be
 - $(1) \quad 0.5$
 - $(2) \quad 0.25$
 - (3) 0.8
 - $(4) \quad 0.4$
- **18.** Which one of the following statements is *incorrect* ?
 - (1) Rolling friction is smaller than sliding friction.
 - (2) Limiting value of static friction is directly proportional to normal reaction.
 - $(3) \quad \mbox{Frictional force opposes the relative motion.}$
 - (4) Coefficient of sliding friction has dimensions of length.

The moment of the force, $\overrightarrow{F} = 4\hat{i} + 5\hat{j} - 6\hat{k}$ at (2, 0, -3), about the point (2, -2, -2), is given by (1) $-8\hat{i} - 4\hat{j} - 7\hat{k}$

- (2) $-4\hat{i} \hat{j} 8\hat{k}$ (3) $-7\hat{i} - 8\hat{j} - 4\hat{k}$ (4) $-7\hat{i} - 4\hat{j} - 8\hat{k}$
- 20. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field E . Due to the force q E, its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively
 - (1) 2 m/s, 4 m/s
 - (2) 1 m/s, 3 m/s
 - (3) 1 m/s, 3.5 m/s
 - (4) 1.5 m/s, 3 m/s
- 21. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is
 - (1) 0.521 cm
 - (2) 0.525 cm
 - (3) 0.053 cm
 - (4) 0.529 cm

A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is


(3)

(4)

 $a = g \cos \theta$

 $a = g \tan \theta$

23. The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

- 24. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is
 - (1) 13.2 cm
 - (2) 8 cm
 - $(3) \quad 12{\cdot}5~cm$
 - (4) 16 cm
- 25. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere? (Given :

Mass of oxygen molecule (m) = 2.76×10^{-26} kg

Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$

- $(1) ~~ 2{\cdot}508 \times 10^4 \; {\rm K}$
- $(2) \quad 8{\cdot}360\times 10^4 \ \mathrm{K}$
- (3) $5.016 \times 10^4 \text{ K}$
- $(4) \quad 1{\cdot}254\times 10^4 \ \mathrm{K}$
- **26.** The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is
 - (1) 26.8%
 - (2) 20%
 - (3) 6.25%
 - (4) 12.5%

- Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ '. At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation ?
 - (1) Reflected light is polarised with its electric vector parallel to the plane of incidence
 - (2) Reflected light is polarised with its electric vector perpendicular to the plane of incidence

(3) $i = \sin^{-1}\left(\frac{1}{\mu}\right)$ (4) $i = \tan^{-1}\left(\frac{1}{\mu}\right)$

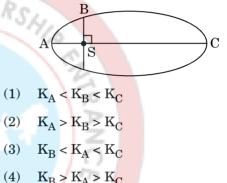
- In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to
 - (1) **1.8 mm**
 - (2) **1.9 mm**
 - $(3) \quad 2.1 \text{ mm}$
 - (4) 1·7 mm
- **29.** An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
 - $(1) \quad \text{small focal length and large diameter} \\$
 - $(2) \quad \ \ {\rm large \ focal \ length \ and \ small \ diameter}$
 - (3) large focal length and large diameter
 - (4) small focal length and small diameter

- 30. An em wave is propagating in a medium with a velocity \$\vec{V}\$ = V\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along
 - (1) z direction
 - (2) + z direction
 - (3) y direction
 - (4) -x direction
- **31.** The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
 - (1) 60°
 - (2) 45°
 - (3) 30°
 - (4) zero
- **32.** An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
 - (1) 30 cm away from the mirror
 - (2) 36 cm away from the mirror
 - (3) 30 cm towards the mirror
 - (4) 36 cm towards the mirror
- **33.** The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance
 - $(1) \quad 0{\cdot}138 \; H$
 - $(2) \quad 138{\cdot}88 \ H$
 - (3) **1**·389 H
 - (4) 13·89 H

Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is

- 40 Ω
- $(2) \quad 25 \ \Omega$
- $(3) \quad 250 \ \Omega$
- $(4) \quad 500 \; \Omega$

35.


A metallic rod of mass per unit length 0.5 kg m^{-1} is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is

- (1) 7·14 A
- (2) 5.98 A
- (3) 14·76 A
- (4) 11.32 A
- 36. An inductor 20 mH, a capacitor 100 μ F and a resistor 50 Ω are connected in series across a source of emf, V = 10 sin 314 t. The power loss in the circuit is
 - (1) 0·79 W
 - (2) 0.43 W
 - (3) 2.74 W
 - (4) 1.13 W
- **37.** A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
 - (1) the current source
 - (2) the magnetic field
 - (3) the lattice structure of the material of the rod
 - (4) the induced electric field due to the changing magnetic field

38. A small sphere of radius 'r' falls from rest in a 42. viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to

- r^3 (1)
- r^2 (2)
- r^5 (3)
- r^4 (4)
- 39. The power radiated by a black body is P and it 43. radiates maximum energy at wavelength, λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4}\lambda_0$, the power radiated by it becomes nP. The value of n is C.A.
 - (1)4
 - (2)
 - 256(3)
 - 81 81 (4)256
- A sample of 0.1 g of water at 100°C and normal 40. pressure $(1.013 \times 10^5 \text{ Nm}^{-2})$ requires 54 cal of heat energy to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is
 - (1)104·3 J
 - (2)208.7 J
 - (3) $42 \cdot 2 J$
 - (4)84.5 J
- 41. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount?
 - (1)9 F
 - 6 F (2)
 - (3) $4 \mathrm{F}$
 - \mathbf{F} (4)

- A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
 - (1)Angular velocity
 - (2)Moment of inertia
 - (3)Rotational kinetic energy
 - (4)Angular momentum
- The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are K_A , K_B and K_C , respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

- A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (K_t) as well as rotational kinetic energy (K_r) simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is
- (1) 7:10 (2)5:7

44.

- (3)10:7
- 2:5(4)
- If the mass of the Sun were ten times smaller 45. and the universal gravitational constant were ten times larger in magnitude, which of the following is *not* correct?
 - Raindrops will fall faster. (1)
 - (2)Walking on the ground would become more difficult.
 - Time period of a simple pendulum on the (3)Earth would decrease.
 - 'g' on the Earth will not change. (4)

46.		ch of the following is a none ?	n amino acid derived	50.	Cilia (1)	tes differ from all other protozoans in using flagella for locomotion				
					(1)	having a contractile vacuole for removing				
	(1)	Epinephrine			(_)	excess water				
	(2)	Ecdysone			(3)	3) using pseudopodia for capturing prey				
	(3)	Estradiol		51.	(4)	having two types of nuclei				
	(4)	Estriol				tify the vertebrate group of animals acterized by crop and gizzard in its digestive				
47.		ch of the following str	Ũ		•	Amphibia				
	inco	prrectly paired with its	function ?		(1)	Reptilia				
	(1)	Medulla oblongata :	controls respiration and cardiovascular		(3)	Aves				
			reflexes.		(4)	Osteichthyes				
	(2)	Limbic system :	consists of fibre	52.		h of the following organisms are known as				
	(2)	Limble System .	tracts that	J2.		producers in the oceans?				
			interconnect		(1)	Dinoflagellates				
			different regions of brain; controls		(2)	Diatoms				
			movement.		(3)	Cyanobacteria				
	(3)	Hypothalamus :	production of		(4)	Euglenoids				
			releasing hormones	5 3.	Whic	the one of these animals is not a				
			and regulation of temperature,	00.		eotherm ?				
			hunger and thirst.	<i>Y</i>	(1)	Macropus				
	(4)	Corpus callosum :	band of fibers			Chelone				
			connecting left and			5				
			right cerebral hemispheres.		(3)	Camelus				
				Ъ	(4)	Psittacula				
48.		transparent lens in the	human eye is held in	54.	Whic	h of the following animals does <i>not</i> undergo				
	its p	blace by	्ष्था एव	-सर्व	meta	morphosis ?				
	(1)	ligaments attached to			(1)	Earthworm				
	(2)	ligaments attached to			(2)	Tunicate				
	(3)	smooth muscles attach	ned to the iris		(3)	Moth				
	(4)	smooth muscles attach	ned to the ciliary body		(4)	Starfish				
49.	Whi	ch of the following h	ormones can play a	55.		h of the following features is used to identify				
10.		ificant role in osteoporo	1 0			le cockroach from a female cockroach ?				
	(1)	Aldosterone and Prola			(1)	Presence of a boat shaped sternum on the 9 th abdominal segment				
	(2)	Progesterone and Aldo	osterone		(9)					
	(3)	Estrogen and Parathy			(2) (3)	Presence of caudal styles Forewings with darker tegmina				
	(4)	Parathyroid hormone			(3) (4)	Presence of anal cerci				
	、=/			l	(4)					

56.	Whi	ch one of the following population ractions is widely used in medical science for	61.	Hormones secreted by the placenta to maintain				
		production of antibiotics ?		preg	mancy are			
	(1)	Commensalism		(1)	hCG, hPL, progestogens, prolactin			
	(2)	Mutualism		(2)	hCG, hPL, estrogens, relaxin, oxytocin			
	(3)	Parasitism		(3)	hCG, hPL, progestogens, estrogens			
	(4)	Amensalism		(4)	hCG, progestogens, estrogens,			
57.	All	of the following are included in 'Ex-situ		(4)	glucocorticoids			
	cons	servation' except			Sideocordiolas			
	(1)	Wildlife safari parks	62.	The	contraceptive 'SAHELI'			
	(2)	Sacred groves		(1)	blocks estrogen receptors in the uterus,			
	(3)	Botanical gardens Seed banks		(1)	preventing eggs from getting implanted.			
	(4)	Seed banks		(2)	increases the concentration of estrogen and			
58.		ch the items given in Column I with those in			prevents ovulation in females.			
	Colu belo	umn II and select the <i>correct</i> option given	/ L/Q	(3)	is an IUD.			
	2010	Column I Column II		(4)	is a post-coital contraceptive.			
	a.	Eutrophication i. UV-B radiation						
	b.	Sanitary landfill ii. Deforestation	63.	The	amnion of mammalian embryo is derived			
	c.	Snow blindness iii. Nutrient		from				
		enrichment	12	(1)	ectoderm and mesoderm			
	d.	Jhum cultivation iv. Waste disposal		(2)	endoderm and mesoderm			
	(1)	a b c d	1	(3)	mesoderm and trophoblast			
	(1) (2)	ii i iii iv i iii iv ii		(4)	ectoderm and endoderm			
	(2)	i iii iv ii iii iv i ii			5			
	(4)	i ii iv iii	64.	The	difference between spermiogenesis and			
-				sper	miation is			
59.		growing population of a country,	Ľ.,	(1)	In spermiogenesis spermatids are formed,			
		pre-reproductive individuals are more than the reproductive individuals.	13		while in spermiation spermatozoa are formed.			
	(2)	reproductive individuals are less than the post-reproductive individuals.		(2)	In spermiogenesis spermatozoa are formed,			
	(3)	reproductive and pre-reproductive individuals are equal in number.			while in spermiation spermatids are formed.			
	(4)	pre-reproductive individuals are less than the reproductive individuals.		(3)	In spermiogenesis spermatozoa from sertoli cells are released into the cavity of			
60.		ch part of poppy plant is used to obtain the g "Smack" ?			seminiferous tubules, while in spermiation spermatozoa are formed.			
	(1)	Flowers		(4)	In spermiogenesis spermatozoa are formed,			
	(2)	Latex		. /	while in spermiation spermatozoa are			
	(3)	Roots			released from sertoli cells into the cavity of			
	(4)	Leaves			seminiferous tubules.			

65.	Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively ? (1) Inflammation of bronchioles; Decreased						68.		umn I with those in orrect option given				
	(1)		atory s		DI UIICII	ioles, Decreaseu			Column I Column II				lumn II
	(2)	respir	atory s	urface		chioles; Increased		a.	Glyco	Glycosuria i.			umulation of uric in joints
	(3) (4)		nmatior		nchiole	surface; es surface;		b.	Gout		ii.		s of crystallised s within the kidney
	(1)	Decreased respiratory surface; Inflammation of bronchioles						c.	Renal	calculi	iii.		ammation in
66.	Match the items given in Column I with those in Column II and select the <i>correct</i> option given										-	neruli	
	belo		and se	elect th	le <i>cori</i>	rect option given		d.	Glomo nephr	erular itis	iv.	Pres urin	sence of glucose in
		Colun	nn I		C_{i}	olumn II							
	a.	Tricus	spid val	ve i.		tween left atrium	LA		a 	b 	с	d	
		р.	• • • •			and left ventricle Between right		(1)	iii	ii 	iv 	i	
	b.	Bicus	pid valv	re ii		tween right		(2)		ii 	iii	iv	
						lmonary artery		(3)	ii	111	i 	iv 	
	c.	Semil	unar va	lve ii		tween right		(4)	iv	5	ii	ii	1
						ium and right itricle	<mark>69</mark> .	Mat	ch the	items g	iven i	n Col	umn I with those in
		a b c			~			and se	elect f	the c	orrect option given		
	(1)	iii	i	i e i e	3	belo		21					
	(2)	i	iii	ii	12				Colun	CY /			Column II
	(3)	i	ii	iii					(Func	(Function)			(Part of Excretory System)
	(4)	ii	i	iii		P				21			2
67.			0			nn I with those in		a.	Ultrafiltration			i.	Henle's loop
	Colı belo		and se	elect th	le <i>corr</i>	rect option given	Ľ.,	b.		Concentration of urine			Ureter
	0010	Colun	nn I			Column II	ন্দ	$E_{T_{i}}$	Transport of				I I win own bloddon
	a.	Tidal	volume		i.	2500 - 3000 mL		C.	urine	port of		111.	Urinary bladder
	b.	Inspir volum	ratory R ne	leserve	ii.	1100 – 1200 mL		d.	Stora	ge of ur	ine	iv.	Malpighian corpuscle
	c.	Expir volum	atory R ne	eserve	iii.	$500-550 \mathrm{~mL}$						v.	Proximal convoluted tubule
	d.	Resid	ual volu	ıme	iv.	$1000 - 1100 \ mL$			a	b	с	d	
		a	b	с	d			(1)	a iv		e ii	ii	
	(1)	iii	ii	i	iv					v			
	(2)	iii	i	iv	ii			(2)	iv	i	ii	ii 	
	(3)	i	iv	ii	iii			(3)	v	iv	i	ii	
	(4)	iv	iii	ii	i			(4)	v	iv	i	ii	i

70.	Which of the following events does <i>not</i> occur in rough endoplasmic reticulum ?	76.	All of the following are part of an operon <i>except</i>				
	(1) Protein folding		(1) an operator				
	(2) Protein glycosylation		(2) structural genes				
	(3) Cleavage of signal peptide		(3) an enhancer				
	(4) Phospholipid synthesis		(4) a promoter				
71.	Which of these statements is <i>incorrect</i> ?	77.	Match the items given in Column I with those in Column II and select the <i>correct</i> option given				
	(1) Enzymes of TCA cycle are present in mitochondrial matrix.		below : Column I Column II				
	(2) Glycolysis occurs in cytosol.						
	(3) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.		a. Proliferative Phase i. Breakdown of endometrial lining				
	(4) Oxidative phosphorylation takes place in outer mitochondrial membrane.		b. Secretory Phase ii. Follicular Phase				
72.	Nissl bodies are mainly composed of SCH	PLA	c. Menstruation iii. Luteal Phase				
	(1) Proteins and lipids		(1) iii ii i				
	(2) DNA and RNA						
	(3) Nucleic acids and SER	-	(2) i iii ii				
	(4) Free ribosomes and RER		(3) ii iii i				
73.	Which of the following terms describe human	125	(4) iii i ii ii				
	dentition ?	78.	According to Hugo de Vries, the mechanism of				
	(1) Thecodont, Diphyodont, Homodont	17	evolution is				
	(2) Thecodont, Diphyodont, Heterodont		(1) Multiple step mutations				
	(3) Pleurodont, Monophyodont, Homodont		(2) Saltation				
	(4) Pleurodont, Diphyodont, Heterodont		(3) Phenotypic variations				
74.	Select the <i>incorrect</i> match :	N	(4) Minor mutations				
	(1) Lampbrush – Diplotene bivalents	79.	A woman has an X-linked condition on one of her				
	chromosomes	- 300	X chromosomes. This chromosome can be				
	(2) Allosomes – Sex chromosomes	1.1.1	inherited by				
	(3) Submetacentric – L-shaped chromososmes chromosomes		(1) Only daughters				
	(4) Polytene – Oocytes of amphibians		(2) Only sons				
	chromosomes		 (3) Only grandchildren (4) Beth sons and doughters 				
75.	Many ribosomes may associate with a single	:	(4) Both sons and daughters				
	mRNA to form multiple copies of a polypeptide	80.	AGGTATCGCAT is a sequence from the coding				
	simultaneously. Such strings of ribosomes are termed as		strand of a gene. What will be the corresponding sequence of the transcribed mRNA ?				
	(1) Polysome		(1) AGGUAUCGCAU				
	(2) Polyhedral bodies		(2) UGGTUTCGCAT				
	(3) Plastidome		(3) ACCUAUGCGAU				
	(4) Nucleosome		(4) UCCAUAGCGUA				
	(4) Nucleosome						

81.	help (1) (2)	ch of the following gastric cells indirectly in erythropoiesis ? Chief cells Mucous cells	dis (1) (2) (3)	 Which of the following is <i>not</i> an autoimmune disease ? (1) Psoriasis (2) Rheumatoid arthritis (3) Alzheimer's disease 					
	(3)	Goblet cells		(4) Vitiligo					
	(4)	Parietal cells		nong the following sets of examples for vergent evolution, select the <i>incorrect</i> option :					
82.	Mat	ch the items given in Column I with those in	(1)	Forelimbs of man, bat and cheetah					
	Colu	umn II and select the <i>correct</i> option given	(2)						
	belo	w :	(3)	,					
		Column I Column II	(4)						
	a.	Fibrinogen i. Osmotic balance		nversion of milk to curd improves its tritional value by increasing the amount of					
	b.	Globulin ii. Blood clotting							
	c.	Albumin iii. Defence mechanism	(2)	Vitamin A					
		a b c	(3)	Vitamin B ₁₂					
	(1)	a b c iii ii i	(4)	Vitamin E					
	(1) (2)			which disease does mosquito transmitted					
	(2)			thogen cause chronic inflammation of mphatic vessels ?					
	(4)		(1)						
		9	(2)						
83.		ch of the following is an occupational	(3)						
	-	iratory disorder ?	(4)	Amoebiasis					
	(1)	Anthracis		e similarity of bone structure in the forelimbs					
	(2)	Silicosis		many vertebrates is an example of Homology					
	(3)	Botulism	(1)						
	(4)	Emphysema SPET UT	(3)						
84.	Calc	ium is important in skeletal muscle	(4)	Adaptive radiation					
01		raction because it		hich of the following characteristics represent heritance of blood groups' in humans ?					
	(1)	binds to troponin to remove the masking of	a.	Dominance					
		active sites on actin for myosin.	b.	Co-dominance					
	(2)	activates the myosin ATPase by binding to	c.	Multiple allele					
		it.	d.	Incomplete dominance					
	(3)	detaches the myosin head from the actin filament.	e.	Polygenic inheritance					
	(\mathbf{A})		(1) (2)	,					
	(4)	prevents the formation of bonds between the myosin cross bridges and the actin	(2)						
		filament.	(4)	,					
	/= -								

91.	Which of the following flowers only once in its life-time ? (1) Bamboo species	98.	In India, the organisation responsible for assessing the safety of introducing genetically modified organisms for public use is			
	(2) Jackfruit		(1) Indian Council of Medical Research (ICMR)			
	(3) Mango(4) Papaya		(2) Council for Scientific and Industrial Research (CSIR)			
92.	Which of the following pairs is <i>wrongly</i> matched?		(3) Research Committee on Genetic Manipulation (RCGM)			
	 (1) Starch synthesis in pea : Multiple alleles (2) ABO blood grouping : Co-dominance 		(4) Genetic Engineering Appraisal Committee (GEAC)			
	(3) XO type sex : Grasshopper determination	99.	Which of the following is commonly used as a vector for introducing a DNA fragment in human			
	(4) T.H. Morgan : Linkage		lymphocytes ?			
93.	Select the <i>correct</i> statement :		(1) Retrovirus			
	(1) Franklin Stahl coined the term "linkage".	1.	(2) Ti plasmid			
	(2) Punnett square was developed by a British	LA	(3) λ phage			
	scientist.(3) Spliceosomes take part in translation.		(4) pBR 322			
	(4) Transduction was discovered by S. Altman.	100	The correct order of store in Delementer Chain			
94.	The experimental proof for semiconservative		The correct order of steps in Polymerase Chain Reaction (PCR) is			
J1 .	replication of DNA was first shown in a		(1) Extension, Denaturation, Annealing			
	(1) Fungus	17	(2) Annealing, Extension, Denaturation			
	(2) Bacterium	-	(3) Denaturation, Extension, Annealing			
	(3) Plant(4) Virus	<u>4</u>	(4) Denaturation, Annealing, Extension			
95.	Offsets are produced by	101.	A 'new' variety of rice was patented by a foreign			
00.	(1) Meiotic divisions		company, though such varieties have been			
	(2) Mitotic divisions		present in India for a long time. This is related to			
	(3) Parthenocarpy	5	(1) $Co-667$			
	(4) Parthenogenesis		(2) Sharbati Sonora(3) Lerma Rojo			
96.	Which of the following has proved helpful in preserving pollen as fossils ?		(3) Lerma Rojo(4) Basmati			
	(1) Pollenkitt	510				
	(2) Cellulosic intine	102.				
	(3) Oil content		(1) Ribozyme – Nucleic acid			
	(4) Sporopollenin		(2) $F_2 \times \text{Recessive parent} - \text{Dihybrid cross}$			
97.	Select the <i>correct</i> match :		(3) T.H. Morgan – Transduction			
	(1) Alec Jeffreys – <i>Streptococcus</i>	109	(4) G. Mendel – Transformation			
	(2) Alfred Hershey and – TMV Martha Chase	103.	Use of bioresources by multinational companies and organisations without authorisation from the concerned country and its people is called			
	 (3) Matthew Meselson – Pisum sativum and F. Stahl 		 Bio-infringement Biopiracy 			
	 (4) Francois Jacob and - Lac operon Jacques Monod 		(3) Biodegradation(4) Bioexploitation			

104.	Nata	ality refers to	110.	The two functional groups characteristic of
	(1)	Death rate		sugars are
	(2)	Birth rate		(1) hydroxyl and methyl
	(3)	Number of individuals leaving the habitat		(2) carbonyl and methyl
	(4)	Number of individuals entering a habitat		(3) carbonyl and phosphate
105	Nich	ne is		(4) carbonyl and hydroxyl
100.	(1)	all the biological factors in the organism's environment	111.	Which among the following is <i>not</i> a prokaryote ?(1) Saccharomyces
	(2)	the physical space where an organism lives		(2) Mycobacterium
	(3)	the range of temperature that the organism		(3) Nostoc
		needs to live		(4) Oscillatoria
	(4)	the functional role played by the organism	112.	
		where it lives		(1) Temperature
106.	Wha	at type of ecological pyramid would be		 (2) Light (3) O₂ concentration
	obta	uined with the following data?	LA	
		Secondary consumer : 120 g		(4) CO_2 concentration
		Primary consumer : 60 g	113.	0 I 0
		Primary producer : 10 g		reaction of photosynthesis ? (1) ATP
	(1)	Inverted pyramid of biomass		(1) AII (2) NADH
	(2)	Pyramid of energy S		(3) NADPH
	(3)	Upright pyramid of numbers	10	(4) Oxygen
	(4)	Upright pyramid of biomass	114.	The Golgi complex participates in
107.	In s	tratosphere, which of the following elements	w/	(1) Fatty acid breakdown
		as a catalyst in degradation of ozone and		(2) Formation of secretory vesicles
	rele	ase of molecular ox <mark>ygen</mark> ?		(3) Respiration in bacteria
	(1)	Carbon		(4) Activation of amino acid
	(2)	Cl	115.	Which of the following is true for nucleolus ?
	(3)	Fe		(1) Larger nucleoli are present in dividing cells.
	(4)	Oxygen	-	(2) It is a membrane-bound structure.
108.	Wor	ld Ozone Day is celebrated on	स्व	(3) It takes part in spindle formation.
				(4) It is a site for active ribosomal RNA
	(1)	5 th June		synthesis.
	(2)	21 st April	116.	The stage during which separation of the paired homologous chromosomes begins is
	(3)	16 th September		(1) Pachytene
	(4)	22 nd April		(2) Diplotene(3) Diakinesis
109.	Whi	ch of the following is a secondary pollutant ?		(4) Zygotene
	(1)	СО	117.	Stomata in grass leaf are
	(2)	CO ₂		(1) Dumb-bell shaped
		-		(2) Kidney shaped
	(3)	SO ₂		(3) Rectangular
	(4)	0.	1	(1) Domolahanad

 O_3

(4)

(4)

Barrel shaped

110	Carr									
118.	(1)	parian strips occur in Epidermis	125.			-	ains a	are preser	it in	
	(1) (2)	Pericycle		 (1) (2) 	Musta Cycas					
		Cortex		(2) (3)	Mang					
	(3)			(4)	Pinus					
	(4)	Endodermis		(1)	1 11113	,				
119.		ts having little or no secondary growth are	126.	Afte	r karyo	ogamy	follo	wed by n	neiosis, spores are	
	(1)	Grasses		proc	produced exogenously in					
	(2)	Deciduous angiosperms		(1)		ospora				
	(3)	Conifers		(2)	Alterr					
	(4)	Cycads		(3)	Agari					
120.	Pneu	umatophores occur in		(4)	Sacch	naromy	vces			
	(1)	Halophytes	127.	Mat	ch tha	itoms	aiven	in Colur	nn I with those in	
	(2)	Free-floating hydrophytes	1271				-		<i>rect</i> option given	
	(3)	Carnivorous plants		belo		unu .			eee option given	
	(4)	Carnivorous plants Submerged hydrophytes et potato is a modified Stem	LA	Rs	Colum	n I		Column	II	
121	Swe	et potato is a modified		a.	era 🖓	arium	i.	It is a pl	ace having a	
141.	(1)	Stem		u				-	n of preserved	
	(1)	Adventitious root			1.	2.			nd animals.	
	(2) (3)	Tap root		b.	Key	3	ii.	-	at enumerates	
	(4)	Rhizome				5			cally all the	
			2			ź			ound in an area	
122.		ndary xylem and phloem in dicot stem are				ō		with brie	ef description	
	-	luced by	9			m		aiding id	lentification.	
	(1)	Apical meristems		c.	Muse	um	iii.	Is a plac	e where dried and	
	(2)	Vascular cambium			/.έ	? /		pressed	plant specimens	
	(3)	Phellogen		_	Y				l on sheets are	
	(4)	Axillary meristems	-					kept.		
123.	Whi	ch of the following statem <mark>ents is <i>correct</i> ?</mark>		d.	Catal	ogue	iv.		et containing a list	
	(1)	Ovules are not enclosed by ovary wall in							cters and their	
		gymnosperms.	A 44						es which are	
	(2)	<i>Selaginella</i> is heterosporous, while <i>Salvinia</i> is homosporous.						various	n identification of	
	(3)	Horsetails are gymnosperms.			a	b	с	d	laxa.	
	(4)	Stems are usually unbranched in both		(1)	i	iv	iii			
	(1)	Cycas and Cedrus.		(1) (2)	iii	ii	i	iv		
194	Solo	ct the <i>wrong</i> statement :		(2)	ii	iv	iii			
124.				(4)	iii	iv	i	ii		
	(1)	Cell wall is present in members of Fungi and Plantae.								
	(2)	Mushrooms belong to Basidiomycetes.	128.					matched		
	(3)	Pseudopodia are locomotory and feeding		(1)		-	-	netes –	Polysiphonia	
		structures in Sporozoans.		(2)	-	gellate	-	pores –	Brown algae	
	(4)	Mitochondria are the powerhouse of the cell		(3)		na cup		-	Marchantia	
	-	in all kingdoms except Monera.		(4)	Unice	ellular	orgai	nısm –	Chlorella	

129.	close relationship with a species of moth, where	136.	Which of the following statements is not true for halogens ?				
	none of the two can complete its life cycle without the other ?		(1) All form monobasic oxyacids.				
	(1) Hydrilla		(2) All are oxidizing agents.				
	(1) Hydriffa (2) Yucca		(3) All but fluorine show positive oxidation				
	(3) Banana		states.				
	(4) Viola		(4) Chlorine has the highest electron-gain				
130.	Pollen grains can be stored for several years in		enthalpy.				
	liquid nitrogen having a temperature of	137.	Considering Ellingham diagram, which of the				
	(1) $-120^{\circ}C$		following metals can be used to reduce alumina?				
	(2) -80° C		(1) Fe				
	$(3) - 196^{\circ}C$		(2) Zn				
	$(4) - 160^{\circ}C$		(3) Mg				
131.	Which of the following elements is responsible for maintaining turgor in cells ?	AL A	(4) Cu				
	(1) Magnesium	138.	In the structure of ClF ₃ , the number of lone pairs				
	(2) Sodium		of electrons on central atom 'Cl' is				
	(3) Potassium		(1) one				
	(4) Calcium		(2) two				
132.	Double fertilization is		(3) four				
	(1) Fusion of two male gametes of a pollen tube	115	(4) three				
	(2) Fusion of one male gamete with two polar nuclei	139.	The correct order of atomic radii in group 13 elements is				
	(3) Fusion of two male gametes with one egg		(1) $B < Al < In < Ga < Tl$				
	(4) Syngamy and triple fusion		(2) $B < Al < Ga < In < Tl$				
133.	Oxygen is <i>not</i> produced during photosynthesis by		(3) B < Ga < Al < Tl < In				
	(1) Green sulphur bacteria		(4) $B < Ga < Al < In < Tl$				
	(2) Nostoc	140	The correct order of N-compounds in its				
	 (3) Cycas (4) Chara 	110.	decreasing order of oxidation states is				
104		<i>s</i> 4e	(1) HNO_3 , NO, N ₂ , NH ₄ Cl				
134.	What is the role of NAD^+ in cellular respiration?		(2) HNO_3 , NO, NH_4Cl , N_2				
	(1) It functions as an enzyme.		0 1 2				
	(2) It functions as an electron carrier.		5 1 2				
	(3) It is a nucleotide source for ATP synthesis.		(4) $\text{NH}_4\text{Cl}, \text{N}_2, \text{NO}, \text{HNO}_3$				
	(4) It is the final electron acceptor for anaerobic	141.	Which one of the following elements is unable to				
	respiration.		form MF_6^{3-} ion ?				
135.	In which of the following forms is iron absorbed by plants ?		(1) Ga				
	(1) Ferric						
	(2) Ferrous		$\begin{array}{ccc} (2) & Al \\ (2) & B \end{array}$				
	(3) Free element		(3) B (4) I				
	(4) Both ferric and ferrous		(4) In				

- C₂H₅OH, C₂H₆, C₂H₅Cl (1)
- (2)C₂H₅OH, C₂H₅Cl, C₂H₅ONa
- C₂H₅Cl, C₂H₆, C₂H₅OH (3)
- C₂H₅OH, C₂H₅ONa, C₂H₅Cl (4)
- **143.** Hydrocarbon (A) reacts with bromine bv substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous SCALSC hydrocarbon containing less than four carbon atoms. (A) is
 - $CH \equiv CH$ (1)
 - (2) $CH_2 = CH_2$
 - (3) $CH_3 CH_3$
 - (4) CH₄
- 144. The compound C_7H_8 undergoes the following reactions :

 $C_7H_8 \xrightarrow{3 \operatorname{Cl}_2/\Delta} A \xrightarrow{\operatorname{Br}_2/\operatorname{Fe}} B \xrightarrow{\operatorname{Zn}/\operatorname{HCl}} C$

The product 'C' is

- (1)*m*-bromotoluene
- (2)o-bromotoluene
- (3)3-bromo-2,4,6-trichlorotoluene
- *p*-bromotoluene (4)
- 145. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity?
 - (1) $N_{2}O_{5}$
 - (2) NO_{2}
 - (3) $N_{2}O$
 - (4)NO

SPACE FOR ROUGH WORK www.aimset.in

- 146. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations :
 - $60 \text{ mL} \frac{\text{M}}{10} \text{ HCl} + 40 \text{ mL} \frac{\text{M}}{10} \text{ NaOH}$ a. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH b.
 - 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH c.
 - 100 mL $\frac{M}{10}$ HCl + 100 mL $\frac{M}{10}$ NaOH d.

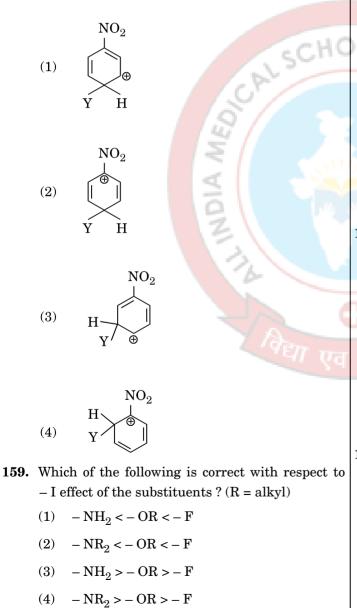
pH of which one of them will be equal to 1?

- (1)b (2)а
- (3) d
- (4) c

147. On which of the following properties does the coagulating power of an ion depend?

- (1)The magnitude of the charge on the ion alone
- (2)Size of the ion alone
- Both magnitude and sign of the charge on (3)the ion
- (4)The sign of charge on the ion alone

148. The solubility of $BaSO_4$ in water is 2.42×10^{-3} gL⁻¹ at 298 K. The value of its solubility product (K_{sp}) will be


(Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$)

- $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$ (1)
- $1.08 imes 10^{-12} ext{ mol}^2 ext{ L}^{-2}$ (2)
- $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$ (3)
- $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$ (4)
- 149. Given van der Waals constant for NH₃, H₂, O₂ and CO_2 are respectively 4.17, 0.244, 1.36 and 3.59, which one of the following gases is most easily liquefied ?
 - NH_3 (1)
 - (2) H_2
 - (3) 0_2
 - (4) CO_2

150.	spin	fatch the metal ions given in Column I with the pin magnetic moments of the ions given in Column II and assign the <i>correct</i> code :							155. Identify the major products P, Q and R in the following sequence of reactions :					
		Column I Column II								A]	1			
	a.	Co^{3+}		i.	$\sqrt{8}$ B.	М.			<		Anhydrous AlCl2			
	b.	Cr^{3+}		ii.	$\sqrt{35}$ H	3.M.) + $CH_3CH_2CH_2$	Cl	<u>→</u>			
	c.	Fe^{3+}		iii.	$\sqrt{3}$ B.	М.		•		р (j	OO_2			
	d.	Ni^{2+}		iv.	$\sqrt{24}$ I	З.М.	$P \xrightarrow{(i) O_2}{(ii) H_3 O^+/\Delta} Q +$							
				v.	$\sqrt{15}$ H	3.M.			_		_			
		a	b	с	d				Р	Q	R			
	(1)	iv	v	ii	i					CITO				
	(2)	i	ii	iii	iv				$\underset{\textstyle{\downarrow}}{\overset{\rm CH_2CH_2CH_3}{\vdash}}$	СНО ,				
	(3)	iv	i	ii	iii	CHC	LA	(1)			$\rm CH_3 CH_2$ – OH			
	(4)	iii	v	i	ii	AL 3		20/	,	,				
151.	Iron	carbon	yl, Fe(C	$(O)_5$ is	1.5	ALSCHO			1					
	(1)	tetrar	nuclear		1.9				CH ₂ CH ₂ CH ₃	CHO	COOH			
	(2)		nuclear		ŝ,			(2)						
	(3)	trinuc			21		100	(2)	≥ ,		,			
	(4)	dinuc			\geq				5					
152.			etry an [i(CO) ₄]		netic be	ehaviour of the	2		CH(CH ₃) ₂	, OH				
	(1)		-		try and	l diamagnetic		(3)			CH ₃ CH(OH)CH ₃			
	(2)	-	-			amagnetic								
	(3)	squar	e plana	r geome	try and	paramagnetic								
	(4)	tetrah	nedral g	eometry	v and pa	aramagnetic				OH				
153.						ions exhibits n as well ?		(4)	CH(CH ₃) ₂		$\mathrm{CH}_3-\mathrm{CO}-\mathrm{CH}_3$			
	(1)	CrO_4^2		parama	ignetisi	has well ? Vel	.4te		,	, ,				
	(2)	Cr_2O	2 7											
	(3)	MnO	_ 4				156.	Whi	ch of the followi	ng compo	ounds can form a			
	(4)	MnO	$\frac{2-}{4}$						terion ?					
154.	The	type of	of isom	erism s	hown	by the complex		(1)	Aniline					
		$Cl_2(en)_2$												
	(1)			isomeris				(2)	Acetanilide					
	(2)			isomeri				(3)	Benzoic acid					
	(3) (4)		ation iso ige isom	merism	L			(4)	Glycine					
	(1)	ышка	SC ISOIII	0119111			I							

157. Which of the following molecules represents the 160. Magnesium reacts with an element (X) to form an order of hybridisation sp^2 , sp^2 , sp, sp from left to right atoms ?

- $HC \equiv C C \equiv CH$ (1)
- $CH_2 = CH C \equiv CH$ (2)
- (3) $CH_2 = CH - CH = CH_2$
- $CH_3 CH = CH CH_3$ (4)
- **158.** Which of the following carbocations is expected to be most stable?

- ionic compound. If the ground state electronic configuration of (X) is $1s^2 2s^2 2p^3$, the simplest formula for this compound is
 - (1) Mg_2X_3
 - (2)MgX₂
 - Mg₉X (3)
 - Mg₃X₂ (4)

(1)

(2)

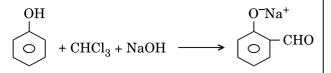
(3)

(4)

161. Iron exhibits bcc structure at room temperature. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature) is

162. Which one is a *wrong* statement?

- Total orbital angular momentum of electron (1)in 's' orbital is equal to zero.
- (2)An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
- (3)The electronic configuration of N atom is

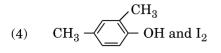

$1s^2$	$2s^2$	$2 p_x^1 \ 2 p_y^1 \ 2 p_z^1$					
^↓	^↓	1	1	→			

- The value of m for d_{z^2} is zero. (4)
- **163.** Consider the following species :

CN⁺, CN⁻, NO and CN

Which one of these will have the highest bond order?

- (1)NO
- (2) CN^{-}
- (3) CN^+
- CN (4)



the electrophile involved is

- (1) dichloromethyl cation ($\overset{\smile}{CHCl}_2$)
- (2) formyl cation ($\overset{\smile}{CHO}$)
- (3) dichloromethyl anion $(CHCl_2)$
- (4) dichlorocarbene ($:CCl_2$)
- 165. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
 - (1) formation of intramolecular H-bonding
 - (2) formation of carboxylate ion
 - (3) more extensive association of carboxylic acid via van der Waals force of attraction
 - (4) formation of intermolecular H-bonding
- 166. Compound A, $C_8H_{10}O$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell.

A and Y are respectively

- (1) $H_3C \longrightarrow CH_2 OH \text{ and } I_2$
- (2) $CH_2 CH_2 OH \text{ and } I_2$
- (3) \bigvee CH CH₃ and I₂ \downarrow OH

- **167.** The correct difference between first- and second-order reactions is that
 - (1) the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
 - (2) the half-life of a first-order reaction does not depend on $[A]_0$; the half-life of a second-order reaction does depend on $[A]_0$
 - (3) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
 - (4) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
- **168.** Among CaH_2 , BeH_2 , BaH_2 , the order of ionic character is
 - (1) $BeH_2 < CaH_2 < BaH_2$
 - (2) $CaH_2 < BeH_2 < BaH_2$
 - (3) $\operatorname{BeH}_2 < \operatorname{BaH}_2 < \operatorname{CaH}_2$
 - (4) $\operatorname{BaH}_2 < \operatorname{BeH}_2 < \operatorname{CaH}_2$
- 169. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :

$$BrO_{4}^{-} \xrightarrow{1.82 \text{ V}} BrO_{3}^{-} \xrightarrow{1.5 \text{ V}} HBrO$$
$$Br^{-} \xleftarrow{1.0652 \text{ V}} Br_{2} \xleftarrow{1.595 \text{ V}}$$

Then the species undergoing disproportionation is

- (1) BrO_3^-
- (2) BrO_4^-
- $(3) \quad Br_2$
- (4) HBrO
- **170.** In which case is the number of molecules of water maximum ?
 - (1) 18 mL of water
 - $(2) \quad 0.18 \text{ g of water}$
 - (3) 0.00224 L of water vapours at 1 atm and 273 K
 - (4) 10^{-3} mol of water

- 171. Regarding cross-linked or network polymers, 176. For the redox reaction which of the following statements is *incorrect*?
 - (1)They contain covalent bonds between various linear polymer chains.
 - (2)They are formed from bi- and tri-functional monomers.
 - (3)Examples are bakelite and melamine.
 - (4)They contain strong covalent bonds in their polymer chains.
- **172.** Nitration of aniline in strong acidic medium also gives m-nitroaniline because
 - In spite of substituents nitro group always | 177. The correction factor 'a' to the ideal gas equation (1)goes to only m-position.
 - (2)In electrophilic substitution reactions amino group is meta directive.
 - In absence of substituents nitro group (3)always goes to m-position.
 - (4)In acidic (strong) medium aniline is present as anilinium ion.
- 173. Which of the following oxides is most acidic in nature?
 - (1)MgO
 - (2)BeO
 - (3)BaO
 - (4)CaO
- 174. The difference between amylose and amylopectin is
 - (1)Amylopectin have $1 \rightarrow 4$ α -linkage and $1 \rightarrow 6 \alpha$ -linkage
 - $1 \rightarrow 4$ α -linkage (2)Amylose have and $1 \rightarrow 6 \beta$ -linkage
 - (3)Amylopectin have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage
 - Amylose is made up of glucose (4)and galactose
- **175.** A mixture of $2\cdot 3$ g formic acid and $4\cdot 5$ g oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
 - (1)1.4
 - (2) $3 \cdot 0$
 - (3) $2 \cdot 8$
 - (4) $4 \cdot 4$

(

 $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O_4^$ the correct coefficients of the reactants for the

balanced equation are

	${ m MnO}_4^-$	$C_2 O_4^{2-}$	H^+
(1)	16	5	2
(2)	2	5	16
(3)	2	16	5
(4)	5	16	2

- corresponds to
 - (1) density of the gas molecules
 - (2) volume of the gas molecules
 - (3) electric field present between the gas molecules
 - (4) forces of attraction between the gas molecules

178. Which one of the following conditions will favour maximum formation of the product in the reaction.

 $A_2(g) + B_2(g) \rightleftharpoons X_2(g) \quad \Delta_r H = -X kJ?$

- (1)Low temperature and high pressure
- (2)Low temperature and low pressure
- (3)High temperature and high pressure
- High temperature and low pressure (4)
- **179.** The bond dissociation energies of X_2 , Y_2 and XYare in the ratio of $1: 0.5: 1. \Delta H$ for the formation of XY is -200 kJ mol⁻¹. The bond dissociation energy of X₂ will be
 - 200 kJ mol^{-1} (1)
 - 100 kJ mol^{-1} (2)
 - 800 kJ mol^{-1} (3)
 - 400 kJ mol^{-1} (4)
- 180. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
 - (1)is halved
 - is doubled (2)
 - (3)is tripled
 - remains unchanged (4)

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

Read carefully the following instructions :

- 1. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 3. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. **Cases where a** candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 4. Use of Electronic/Manual Calculator is prohibited.
- 5. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 7. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

				QNO			ANS						
				91			1						
2	1	47	1	92	2	137	4						
		•		93			3						
				94			3						
5	3	50	3	95	4	140	1						
6				96			2						
7				97			1						
8	4	53		98		143	4						
	2	54	1	99	4	144							
	1	55	4	100			2						
11	1	•	3	101	3	146	4	 					
	2	•	3	102			4	 					
				103			4	 I					
				104									
				105		· · · · · · · · · ·		-	11/	51	A	SHI	
				106			2	50	, 11,	14	٩. ٩	\$27	
				107			3					14	2
				108		/{	1/						
				109			4						Q,
				110		6. fr	4						
				111		<u>.</u> .							
				112									
							4						
				114			2						
		 70		115		and the second							
 26		 71		116	2	161	2						1
				117			4						∇
				118				 I					
				110 119									
				120									
				120		·							>
				121									
				122									
				123									
				124									
				120									
				129									
		·		130		·							
				131									
				132									
							4						
44	4	89	2	134	1	179	2						